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Abstract. We present a fully automated framework for video based
surgical skill assessment that incorporates the sequential and qualitative
aspects of surgical motion in a data-driven manner. We replicate Ob-
jective Structured Assessment of Technical Skills (OSATS) assessments,
which provides both an overall and in-detail evaluation of basic sutur-
ing skills required for surgeons. Video analysis techniques are introduced
that incorporate sequential motion aspects into motion textures. We also
demonstrate significant performance improvements over standard bag-of-
words and motion analysis approaches. We evaluate our framework in a
case study that involved medical students with varying levels of expertise
performing basic surgical tasks in a surgical training lab setting.
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1 Introduction

Surgical skill development, i.e., gaining proficiency in surgical procedures and
techniques, is an essential part of medical training for surgeons. Learning sur-
gical skills is a time-consuming process, and requires expert supervision and
evaluation, merged with extensive practice, throughout all stages of the train-
ing procedure. Manual assessment of surgical skills by experts, is the prevalent
practice, and poses substantial time and resource problems to medical schools
and teaching hospitals. The assessment criteria used are typically domain spe-
cific and often subjective where even domain experts do not always agree on the
assessment scores [1].

To alleviate the problem of subjectivity in manual assessments, structured
manual grading systems, such as the Objective Structured Assessment of Tech-
nical Skills (OSATS) [2] are used in medical schools. OSATS covers a variety of
evaluation criteria: respect for tissue (RT), time and motion (TM), instrument
handling (IH), suture handling (SH), flow of operation (FO), knowledge of pro-
cedure (KP) and overall performance (OP). Since manual assessments are time
consuming and prone to variations, automated analysis of surgical motion has
received attention in recent years.
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The field of surgical skill assessment is dominated by automated recognition
of surgical gestures for robotic minimally invasive surgery (RMIS) [3, 4]. Some
recent works [5, 6] have also proposed skill assessment based on the OSATS cri-
teria for general surgical training. However, these efforts focus on either short
sequential surgical actions or capture qualitative motion dynamics via fine tex-
ture analysis of surgical motion without any temporal or sequential information.
Automated assessment of different OSATS criteria using a common framework
remains challenging as some criteria such as “respect for tissue” depend upon
qualitative motion aspects while others such as “knowledge of procedure” de-
pend upon the sequential motion aspects. Thus, to provide assessments on di-
verse OSATS criteria using a common framework, it is essential to capture both
the qualitative and the sequential motion aspects.

In this work, we propose sequential motion texture (SMT) analysis technique.
Our technique captures both the sequential and qualitative motion aspects. In
SMT, we evaluate motion texture features in sequential time windows, which are
automatically obtained from motion dynamics. We demonstrate that by incor-
porating both qualitative and sequential information in the OSATS skill assess-
ment framework, classification accuracy improves substantially as compared to
the techniques that model either qualitative or sequential motion information.

2 Background

The state-of-the-art in computerized surgical skill evaluation is dominated by
RMIS using robots such as da-Vinci [7]. Several kinematic features (with over a
hundred variables) such as torques, forces etc. from robotic arms and actuators
are used for the analysis. Local approaches [7], proposed for RMIS, decompose
a surgical task into simpler gestures followed by modeling each individual ges-
ture using kinematic data. The second domain is assessment of skills in medical
schools and teaching hospitals [5, 6, 8].

Recently, the attention has shifted towards video based analysis in both
RMIS and teaching domains. Most of the video analysis methods classify dif-
ferent surgemes or surgical phases. For example, Haro et al. [3] and Zapella et
al. [4], employed both kinematic and video data for RMIS surgery. They used
linear dynamical systems (LDS) and bag-of-features (BoF) for surgical gesture
(surgeme) classification in RMIS surgery.

BoF, also known as bag-of-words (BoW) model, is a state-of-the-art technique
for video-based activity recognition and is typically constructed using visual
codebooks derived from local spatio-temporal features [9]. However, BoW do not
capture the underlying structural information, neither of causal nor of sequential
type that is inherent by the ordering of the words. A-BoW [5] attempts to
overcome this limitation by modeling the motion as short sequences of events
and encoding the temporal and structural information into BoW models. With
the A-BoW technique, higher classification accuracy is reported as compared to
standard BoW technique [5]. Some recent efforts have also focused on qualitative
motion aspects instead of sequential information.
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Most of the works on surgical skill assessment [3, 4, 10, 11] relate to either
robot assisted or thoracoscopic/laparoscopic surgeries. Our work is different from
RMIS works with respect to application domain, type of skill assessments and
techniques. Our goal is to provide automated assessment in a general surgical
training lab and we do not use robotic kinematic data. Instead of overall exper-
tise classification into novice, intermediate and expert levels, we provide these
assessments based on the standard OSATS criteria used in medical training. Al-
though, it would be interesting to incorporate sequential information via HMMs
as in [10, 11], in this paper, we do not focus on gesture based skill assessment.
In [5], Bettadapura et. al have compared A-BoW against HMMs and they show
that A-BoW is superior to HMMs. In this paper, we compare to A-BoW and
demonstrate that our technique is superior to A-BoW for OSATS skill classifi-
cation. So, we indirectly show that SMT works better than both A-BoW and
HMMs for OSATS assessment.

Our work is related to [6] since we also use motion textures to represent
qualitative motion aspects, however we extend the basic motion texture (MT)
technique to include sequential information automatically in a data-driven man-
ner. Only few works [5, 6] have reported automated OSATS assessments. We
compare our SMT approach with these works and demonstrate that by includ-
ing both sequential and qualitative motion aspects, OSATS skill classification
accuracy improves substantially.

3 Framework for surgical skill assessment

In our skill assessment framework, the input to the system is a video recording of
a trainee performing suturing task and the output is an automated skill assess-
ment (expertise level) according to the most common and thus most relevant
seven OSATS criteria. We achieve this goal by first computing the sequential
motion texture (SMT) features to encode both the qualitative and sequential
motion aspects, followed by feature selection and classification.

3.1 Sequential motion texture (SMT)

Our SMT technique involves following steps: 1) computing low-level motion fea-
tures; 2) learning motion classes (corresponding to moving entities); 3) comput-
ing data-driven time windows, and 4) sequential encoding of motion dynamics.
Figure 1 gives an overview of the proposed procedure.

We extend the basic motion texture (MT) analysis approach [6] to incorpo-
rate sequential information and demonstrate that doing so results in improved
classification accuracy for all seven OSATS criteria. The main advantages of
motion texture analysis is its view-independent representation via frame kernel
matrices (also known as self-similarity matrix (SSM) [12]), its ability to handle
high dimensional data (the frame kernel matrix will be N×N , regardless of time
series dimensionality, where N is the length of time series or number of frames
in the video), and its ability to encode qualitative motion aspects via texture
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Fig. 1. Framework for sequential motion texture analysis.

analysis of motion dynamics. We exploit these basic characteristics and by data-
driven time windowing, we also achieve inclusion of sequential motion aspects.
In the following, we will discuss the technical details of our SMT framework.

Step 1) Motion feature extraction: To obtain the frame kernel matrix, first
we detect the spatio-temporal interest points (STIP) using Laptev detector.
We use Laptev’s STIP implementation1, with default parameters and with the
sparse feature detection mode. We compute the HOG (Histogram of Oriented
Gradients) and HOF (Histogram of Optical Flow) on a 3D video patch around
each detected STIP to get a 162 element HOG-HOF descriptor as described
in [9].

Step 2) Learning motion classes: We collect all the detected STIPs and their
corresponding HOG-HOF descriptors from two videos of an expert surgeon. We
classify the STIPs into k distinct clusters by applying k -means clustering to the
HoG-HoF descriptors.

Step 3) Classification of STIPs into motion classes: Each cluster of points
(learnt in step 2) represents a distribution for a particular motion class in the
data. We assign the STIPs from remaining videos to each of the learnt motion
distribution based on minimum Mahalanobis distance of a given STIP point
from the cluster distribution. The two expert videos in step 2 are only used to
learn the motion class clusters. We do not use them for evaluating classification
accuracy.

Step 4) Computing motion class counts: We process each video to compute
motion class counts for each of the k classes in each frame. We represent these
counts in a k×N matrix X, where N is the number of frames in the video. Each
element in X, x(p, q), represents the number of STIP points in qth frame and
belonging to the pth motion class.

1 http://www.di.ens.fr/%7Elaptev/download.html#stip
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Step 5) Computing data-driven time windows: We divide the time frequency
matrix X into temporal windows such that each window contains equal propor-
tions of the STIPs corresponding to the largest motion class in a given video.
For example, if the largest motion class has 1,000 STIPs in the whole video, then
the time series can be divided into W = 10 equally sized windows with approx-
imately 100 STIPs in each bin. Using equally sized bins; we group the motion
energy into equivalent segments (or motion bursts) that replicate the repetitive
and procedural behavior of surgical motion.

Step 6) Computing sequential motion texture features: For each time window,
we calculate the frame kernel matrix Kw given by

Kw = φ(Xw)Tφ(Xw), (1)

where each entry in Kw defines similarity between the motion class counts in
the ith and jth frames (xwi and xwj) of the wth time window using a kernel
function φ(xwi)

Tφ(xwj). We use the Gaussian kernel function given by κij =

exp(−‖xwi−xwj‖2
2σ2 ) where σ is the standard deviation.

To encode the qualitative motion dynamics in each time window, we apply
Gray Level Co-occurrence Matrices (GLCM) texture analysis. For each Kw, we
compute L × L dimensional GLCM, where L is the number of gray levels. We
compute the GLCMs for eight directions (0◦ − 360◦ in steps of 45◦ at a spatial
offset of 1 pixel. After averaging (and normalizing) over the GLCM, we compute
twenty GLCM based motion texture features as in [6] and proposed in [13–16].

We encode the sequential motion information by adding the GLCM features
sequentially (corresponding to the order of the windows in the time series) to
obtain a 20W feature vector for each video, where W is the number of windows.
Due to equal proportions of STIPs in each time window, the windows with more
movement will be shorter in duration as compared to the windows with less
movement. Despite varying window duration, the qualitative motion aspect for
each window is encoded into twenty texture features which when ordered corre-
sponding to window locations, also captures the sequential variation of motion
textures. This is important because, an expert surgeon might finish a task faster
as compared to a novice surgeon. However, their overall motion dynamics can
be represented equivalently using same number of windows (and same number
of SMT features) even though the overall task duration and the actual STIP
counts are different.

3.2 Feature selection and skill classification

Some of the GLCM texture statistics are highly correlated with one another
and may be redundant. Also, some features might be noisy and irrelevant for
the skill classification task. In addition, the MT texture analysis yields a 20-
element feature vector while SMT has (20×W )-element feature vector. To derive
skill relevant features and to compensate for the effect of more features (over-
fitting) in SMT as compared to MT, we perform feature selection for both MT
and SMT. We use Sequential Forward Feature Selection (SFFS) [17] to select a
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subset of relevant features for each OSATS criteria. We use a Nearest-Neighbor
(NN) classifier with cosine distance metric as a wrapper function for SFFS and
select the feature subset with minimum classification error in leave-one-out cross-
validation (LOOCV). Other classification algorithms can also be used. However,
we want to compare with BoW and A-BoW and thus use same classifier (i.e.
1-NN with cosine distance metric) as reported in [5].

We compared our method with state-of the-art BoW models (built directly
from the HoG-HoF descriptors), that are typically used for video-based action
recognition [9] and have also been used for surgical gesture recognition [3, 4]. We
also compare with the motion texture (MT) and A-BoW techniques [5, 6].

4 Experimental Evaluation

To test our SMT technique and compare with published OSATS works, we used
the same data as described in [5, 6]. We briefly describe the data acquisition,
expertise level of the participants in our case study and our experiments to
demonstrate the significance of including both sequential and qualitative motion
aspects for automated OSATS assessments.

4.1 Data Acquisition

Video data was collected from sixteen participants. Every participant performed
suturing activities involving tasks such as stitching, knot tying, etc. thereby us-
ing a needle-holder, forceps and the tissue suture pads. These training sessions
were recorded using a standard video camera (50fps, 1280 × 720 pixels), which
was mounted on a tripod. Fifteen participants performed two sessions of a su-
turing task. Each session was recorded in a separate video. An expert surgeon
also performed three sessions giving a total of thirty-three videos. The average
duration of the videos is 18 minutes. Each subject performed the sub-tasks in
order involving a knot tying and running suturing.

The expert surgeon provided ground truth annotation based on the OSATS
scoring scheme. We group the participants into three categories according to
their expertise: novice (OSATS score ≤ 2), intermediate (2 < OSATS score ≤
3.5) and expert (3.5 < OSATS score ≤ 5). With availability of more samples in
future, the number of classes could be increased to five. However, with our small
sample size and few samples with very low and high OSATS scores, grouping the
participants into three categories ensures that we have sufficient samples for each
category. Table 1 shows the number of videos used in our study corresponding
to three expertise levels for each OSATS criteria. For example, we have 9, 15
and 7 subjects (novice, intermediate, and expert respectively) for the “time and
motion” OSATS criterion. For “suture handling”, on the other hand, we have
10, 15 and 6 participants at novice, intermediate, and expert levels respectively.
Since, a given participant may not be an expert (or novice) on all OSATS cri-
teria, individual assessment of each OSATS criteria is essential for training and
feedback.
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Table 1. Number of samples for different expertise levels

RT TM IH SH FO KP OP

Novice 2 9 8 10 3 8 6

Intermediate 14 15 16 15 16 9 17

Expert 15 7 7 6 12 14 8

Abbreviations: RT: Respect for Tissue, TM: Time and Motion, IH: Instrument Handling, SH:
Suture Handling, FO: Flow of Operation, KP: Knowledge of Procedure, OP: Overall Perfor-
mance.

4.2 OSATS skill assessment

We present the results using MT and SMT techniques as percentage of correctly
classified videos using seven nearest neighbor (NN) classifiers trained for each
OSATS criteria. All results are compared against the ground truth provided by
the expert surgeon. We select the parameters (number of gray levels in GLCM
L, number of motion classes k, and time windows W in SMT) using standard
grid search. First, we briefly describe effect of the time windowing and feature
selection on classification accuracy.

Time windowing and feature selection : Figure 2(a) shows sample mo-
tion class counts for k = 5 clusters grouped into W = 10 time windows for SMT.
Note that some time windows (e.g. second and fourth from left) may be longer
in duration if there is less motion (quantified in terms of STIP class counts for
the largest motion class (cyan)) in these windows. Despite varying motion and
duration of videos, SMT features encode both the qualitative and sequential
motion in a given video into a fixed size feature vector of dimension 20W , where
W is the number of windows. It is important to note that time windowing does
segment the time series, however, the segments obtained are not related or iden-
tified as gestures. We just incorporate the qualitative motion in each segment
sequentially into a feature vector.

To test the level of sequential granularity, we vary the number of time win-
dows. We also want to test if varying the number of selected features improves
classification accuracy as in general classification techniques. Figure 2(b) shows
the effect of varying the number of selected features and number of time win-
dows on average (over seven OSATS criteria) classification accuracy. With only
two windows, lower classification rate is observed as compared to higher clas-
sification rates with increasing number of windows and selected features. With
W > 6, and fs > 10, where fs is the number of selected features, we observe that
the average classification rate is greater than 85%. Thus, increased sequential
granularity and including more features improves classification accuracy for all
OSATS criteria.

Comparison with state-of-the-art techniques: Table 2 shows the results
using different techniques. Note that BoW and A-BoW works [5] have used sixty-
three videos since they used both the long range and close up videos for each
participant. We used only long-range videos to ensure that the moving entities
(hands, instruments etc.) exist in most of the frames. By using only thirty-one
videos, we have less training data as compared to [5].
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(a) (b) 

Fig. 2. (a) Motion class counts for with W=10 time windows for k=5 motion classes.
Note that the time windows are of varying duration depending on the motion counts;
(b) Effect of varying the number of selected features (fs) and time windows.

A-BoW captures the temporal and sequential motion aspects and performs
better than standard BoW. MT (with SFFS feature selection) captures the qual-
itative motion aspects, which results in higher classification accuracy of 83.8%
(an increase of 10% from A-BoW) for qualitative OSATS criteria such as “re-
spect for tissue”. However, for sequential OSATS such as “knowledge of proce-
dure”, A-BoW performs better than both MT and standard BoW. For “time and
motion”, MT approach performs slightly better with 80.6% correctly classified
videos (an increase of 6% over A-BoW) possibly due to finer analysis of motion
dynamics. For other OSATS, both A-BoW and MT show comparable perfor-
mance but better than standard BoW. SMT, without feature selection provides
comparable performance as obtained with other methods, however SMT with
feature selection significantly outperforms all previous methods.

Since feature selection is used for both MT and SMT (Table 2, column 2 and
6), the improved performance of SMT is due to encoding of sequential informa-
tion into SMT features. Figure 3 shows the confusion matrices corresponding
to SMT (SFFS) results in Table 2 (column 6). Despite varying expertise for
different OSATS criteria, most of the participants are correctly classified. The
classification accuracy for the expert level is lower than novice and intermediate
skill levels, especially for the IH, FO, OP criteria. It is known that experts may
not use all the steps in a task as reported in [18] and might develop their own
style for performing a specific task.

5 Discussion and future work

In this work, we demonstrated the significance of including both qualitative and
sequential motion aspects for automated OSATS assessments. Our results show
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Table 2. Percentage of correctly classified videos using different techniques

OSATS MT
(SFFS)

BoW A-BoW SMT SMT
(SFFS)

Respect for
Tissue

83.8%
(26/31)

66.6%
(42/63)

73.0
(46/63)

70.9%
(22/31)

96.7%
(30/31)

Time and Motion 80.6%
(25/31)

50.7%
(32/63)

74.6%
(47/63)

80.6%
(25/31)

90.3%
(28/31)

Instrument
Handling

70.9%
(22/31)

50.7%
(32/63)

68.2%
(43/63)

70.9%
(22/31)

83.8%
(26/31)

Suture Handling 74.1%
(23/31)

69.8%
(44/63)

73.0%
(46/63)

61.2%
(19/31)

83.8%
(26/31)

Flow of
Operation

70.9%
(22/31)

49.2%
(31/63)

66.6%
(42/63)

64.5%
(20/31)

83.8%
(26/31)

Knowledge of
Procedure

61.2%
(19/31)

60.3%
(38/63)

80.9%
(51/63)

70.9%
(22/31)

93.5%
(29/31)

Overall
Performance

74.1%
(23/31)

52.3%
(33/63)

71.4%
(45/63)

77.4%
(24/31)

93.5%
(29/31)

Abbreviations: OSATS: Objective Structured Assessment of Technical Skills, MT: Mo-
tion texture, BoW: Bag-of-Words, A-BoW: Augmented Bag-of-Words, SMT: Sequen-
tial Motion Texture SFFS: Sequential Forward Feature Selection (SFFS).

RT TM IH 

KP 

SH 

FO OP 

Fig. 3. Confusion matrices for seven OSATS criteria using SMT with SFFS feature
selection (Table 2, column 6)

that SMT approach outperforms previously proposed techniques for video-based
OSATS assessment of surgical skills (MT, BoW, A-BoW).

We have not correlated the motion information in time windows with surgical
gestures. However, our approach can be extended to develop data-driven gesture
vocabularies by correlating the time windows with expert segmented gestures.
Given the very encouraging assessment results of our case study, we believe that
automatic OSATS assessment has the potential to have a positive impact on
real-world training settings in medical schools and teaching hospitals.
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17. Pudil, P., Novovičová, J., Kittler, J.: Floating search methods in feature selection.
Pattern Recognition Letters 15(11) (1994) 1119–1125

18. Reiley, C., Hager, G.: Decomposition of robotic surgical tasks: an analysis of
subtasks and their correlation to skill. In: MICCAI. (2009)


