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Abstract Purpose: Routine evaluation of basic surgi-

cal skills in medical schools requires considerable time

and effort from supervising faculty. For each surgical

trainee, a supervisor has to observe the trainees in-

person. Alternatively, supervisors may use training videos,

which reduces some of the logistical overhead. All these

approaches however are still incredibly time consuming

and involve human bias. In this paper, we present an

automated system for surgical skills assessment by an-

alyzing video data of surgical activities.

Method : We compare different techniques for video-based

surgical skill evaluation. We use techniques that capture

the motion information at a coarser granularity using

symbols or words, extract motion dynamics using tex-

tural patterns in a frame kernel matrix, and analyze

fine-grained motion information using frequency analy-
sis.

Results: We were successfully able to classify surgeons

into different skill levels with high accuracy. Our results

indicate that fine-grained analysis of motion dynamics

via frequency analysis is most effective in capturing the

skill relevant information in surgical videos.

Conclusion: Our evaluations show that frequency fea-

tures perform better than motion texture features, which

in-turn perform better than symbol/word based fea-

tures. Put succinctly, skill classification accuracy is pos-

itively correlated with motion granularity as demon-

strated by our results on two challenging video datasets.
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1 Introduction

Surgical skill development, i.e., the process of gaining

expertise in procedures and techniques required for pro-

fessional surgery, represents an essential part of medi-

cal training. Acquiring high quality surgical skills is a

time-consuming process that demands expert supervi-

sion and evaluation throughout all stages of the training

procedure. However, the manual assessment of surgical

skills poses a significant resource problem to medical

schools and teaching hospitals and results in compli-

cations in executing and scheduling their day-to-day

activities [1]. In addition to the extensive time require-

ments, manual assessments are often subjective and do-

main experts do not always agree on the assessment

scores. This is evidenced by studies that show poor

correlations between subjective evaluations and objec-

tive evaluations through standardized written and oral

exam [2].

Surgery is a complex task and even basic surgical

skills such as suturing and knot tying (that involve hand

movements in a repetitive manner) require every sur-

gical resident to go through training in order to mas-

ter these basic skills before moving on to more compli-

cated procedures. Considering the volume of trainees

that need to go through basic surgical skills training

along with the time consuming and subjective nature

of manual evaluation, automated assessment of these

basic surgical skills can be of tremendous benefit to

medical schools and teaching hospitals.

Medical literature recognizes the need for objective

surgical skill assessment in surgical training [4]. Yu et

al. [5] have suggested evaluations from residents and in-

terns who frequently supervise the students instead of

the consultant surgeons who do not have the opportu-

nity to directly observe the medical students. However,



2 Aneeq Zia et al.

Table 1 Summary of the OSATS scoring system [3]. The score is a Likert scale from levels 1-5 but the guidelines are provided
only for levels 1, 3, and 5. The diversity of the criteria, lack of guidelines for all levels, and the need to manually observe each
surgeon, makes the manual OSATS scoring a time consuming and challenging process.

Score Respect for
tissue (RT)

Time and
motion
(TM)

Instrument
handling

(IH)

Suture
handling

(SH)

Flow of
operation
(FO)

Knowledge
of

procedure
(KP)

Overall per-
formance
(OP)

1 Unnecessary
force on tis-
sue, caused
damage

Unnecessary
moves

Inappropriate
instrument
use

Repeated en-
tanglement,
poor knot
tying

Seemed un-
sure of next
move

Insufficient
knowledge

Very poor

2 – – – – – – –
3 Occasionally

caused dam-
age

Some unnec-
essary moves

Occasionally
stiff or awk-
ward

Majority of
knots placed
correctly

Some forward
planning

Knew all im-
portant steps

Competent

4 – – – – – – –
5 Minimal tis-

sue damage
Economy of
movement

Fluid move-
ments

Excellent su-
ture control

Planned op-
eration

Familiarity
with all steps

Clearly supe-
rior

the subjectivity and time-consuming nature of these

evaluations still cannot be ruled out.

Structured grading systems such as the Objective

Structured Assessment of Technical Skills (OSATS) [3]

have been developed to reduce the subjectivity. Table

1 summarizes the OSATS scoring system. OSATS con-

sists of seven generic components of operative skill that

are marked on a 5 point Likert scale. OSATS criteria

are diverse and depend on different aspects of motion.

For instance, qualitative criteria such as “respect for

tissue” depend on overall motion quality while sequen-

tial criteria such as “time and motion” and “knowledge

of procedure” depend on motion execution order.

A major drawback of manual OSATS assessment is

the substantial requirements on time and resources in-

volved in getting several staff surgeons to observe the

performance of trainees. However, only few research ef-

forts have addressed automated OSATS assessments for

surgical teaching evaluations. For instance, Datta et al.

[6] defined surgical efficiency score as the ratio of OS-

ATS “end product quality score” and the number of

detected hand movements. Their results indicate signifi-

cant correlations between the overall OSATS rating and

the surgical efficiency. However, they did not correlate

the hand movements to individual OSATS criteria. It is

important to provide automated assessment on individ-

ual OSATS criteria since several studies have demon-

strated its efficacy for objective assessment of surgical

skills [7].

In this work, we analyze different features and clas-

sification back-ends that have been used for automated

classification of surgical skills using video data. We note

that most of the features are built upon basic spatio-

temporal motion attributes such as Histogram of Gra-

dients (HoG) and Histogram of Flow (HoF) features.

These basic motion features in videos can be repre-

sented by a time series of symbols (or words) as in

Hidden-Markov-Models (HMMs), Bag-of-Words (BoW)

and Augmented-BoW (ABoW) techniques. The motion

dynamics can also be represented as textural variations

in a frame kernel matrix representing the similarity be-

tween two frames using a kernel function. Furthermore,

since surgical motion for basic surgical skills (suturing

and knot tying) is inherently repetitive, the periodicity

of motion can be captured by frequency based features

such as Discrete Fourier Transform (DFT) and Discrete

Cosine Transform (DCT).

We note that classification accuracy increases pro-

gressively as we move from coarse word-based (sym-

bolic) features to fine grained frequency based features.

Our results on two independently acquired and chal-

lenging data-sets demonstrate that frequency based fea-

tures are well suited for automated video-based assess-

ment of surgical skills.

Contributions: (1) Comparison of state-of-the-art tech-

niques for video-based automated assessments of OS-

ATS; (2) Analysis of three different types of features

(symbolic, texture based, and frequency based) within

an automated generalized video based assessment frame-

work; and (3) Evaluation of the various techniques on

two independently acquired challenging data-sets.

2 Background

Automated analysis of surgical motion has gained at-

tention in recent years [8–20]. Pioneering works ad-

dressed skill assessment in robotic minimally invasive

surgery (RMIS) and proposed techniques for automatic

detection and segmentation of surgical motions assisted

by robots [15–20]. However, the techniques described in

these works are specifically for RMIS and laparoscopic

surgeries and, to the best of our knowledge, have not
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Table 2 Related works on surgical video analysis. CNN: Convolutional Neural Network, DCT: Discrete Cosine Transform,
DFT: Discrete Fourier Transform, MT: Motion Texture, SMT: Sequential Motion Texture, CRF: Conditional Random Field,
BoW: Bag-of-Words, ABoW: Augmented Bag-of-Words, LDS: Linear Dynamical Systems, DTW: Dynamic Time Warping,
CCA: Canonical Correlation Analysis, HMM: Hidden Markov Model

Reference Technique Gesture Analysis goal Data
Twinanda
(2016) [8]

CNN Yes Surgical tool detection and
phase recognition

Laparoscopic cholecystectomy (endo-
scopic video), 13 subjects

Lea C. (2015) [9] CRF Yes Surgical action segmentation
and recognition

RMIS (both kinematic and video data
from robotic surgery), 8 subjects

Zia (2015) [10] DCT,DFT No OSATS classification General suturing task (only video data),
16 subjects

Sharma (2014) [11,
12]

MT,SMT No OSATS prediction, classifica-
tion

General suturing task (only video data),
16 subjects

Tao (2013) [13] CRF Yes Surgical gesture segmenta-
tion and recognition

RMIS (both kinematic and video data
from robotic surgery), 8 subjects

Bettadapura
(2013) [14]

ABoW No OSATS classification General suturing task (only video data),
16 subjects

Haro (2012), Za-
pella (2013) [15,16]

BoW,
LDS

Yes Surgical gesture recognition RMIS (both kinematic and video data
from robotic surgery), 8 subjects

Padoy (2012) [17] DTW,
HMM

Yes Surgical phase recognition Laparoscopic cholecystectomy (endo-
scopic video), 4 subjects

Lalys (2011) [18] DTW Yes Surgical phase recognition Cataract surgery, 20 videos
Blum (2010) [19] CCA,

HMM
Yes Surgical phase recognition Laparoscopic surgery, 10 videos

Lin (2009) [20] HMM Yes Skill classification but not on
individual OSATS criteria

RMIS (both kinematic and video data
from robotic surgery), 6 subjects

addressed the traditional OSATS based trainee evalua-

tion.

Automated assessment of basic surgical skills for

both RMIS and conventional medical teaching can be

categorized based on the approaches used for time se-

ries analysis. The local approaches model specific surgi-

cal tasks and model the task as a sequence of manually

defined surgical gestures [15,16]. On the other hand,

the global approaches involve the analysis of the whole

motion trajectory without segmentation into surgical

gestures [21,6].

Several RMIS works have used Hidden Markov Mod-

els (HMMs) to represent the surgical motion flow. The

motivation for HMMs and gesture based analysis is de-

rived from speech recognition techniques and the goal

is to develop a language of surgery where a surgical

task can be modeled as a sequence of predefined ges-

tures (also known as surgemes analogous to phonemes

in speech recognition). Tao et al. [13] proposed a com-

bined Markov/semi-Markov conditional random field

(MsM-CRF) model for gesture segmentation and recog-

nition for RMIS.

With advances in video data acquisition, the atten-

tion has shifted towards video based analysis in both

RMIS and teaching domains. Table 2 summarizes re-

cent work on surgical video data. Most of these classify

different surgemes or surgical phases and the data from

different types of surgeries are used. Haro et al [15]

and Zapella et al. [16] employed both kinematic and

video data for RMIS surgery. They used linear dynam-

ical systems (LDS) and bag-of-features (BoF) for sur-

gical gesture (surgeme) classification in RMIS surgery.

Twinanda et al. [8] proposed a CNN architecture, called

EndoNet, for phase recognition and tool presence de-

tection in Laparoscopic cholecystectomy. Lea et al. [9]

developed a method to capture long-range state tran-

sitions between actions by using higher-order temporal

relationships using a variation of the Skip-Chain Condi-

tional Random Field. These works have mainly focused

on RMIS and do not address assessment of OSATS cri-

teria as done in general surgical training.

Some works based on automated assessment of the

OSATS criteria for general surgical training have also

been proposed recently. In [14], the authors introduced

Augmented BoW (ABoW), in which time and motion

are modeled as short sequences of events and the un-

derlying local and global structural information is au-

tomatically discovered and encoded into BoW models.

They classified surgeons into different skill levels based

on the holistic analysis of time series data. In [11], the

authors proposed Motion Texture (MT) analysis tech-

nique in which each video is represented as a multi-

dimensional sequence of motion class counts to obtain

a frame kernel matrix. The textural features derived

from the frame kernel matrix are used for prediction

of OSATS criteria. Although MT technique provided

good OSATS prediction, it is computationally inten-

sive (N ×N sized frame kernel matrix for a video with
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Fig. 1 Overview of the system used for skill assessment.

N frames) and does not account for the sequential mo-

tion aspects in surgical tasks. A variant of MT, called

Sequential Motion Texture (SMT) [12], encoded both

the qualitative and sequential motion aspects.

Some recent skill assessment works in other domains

such as competitive sports [22] have used frequency

analysis techniques such as Discrete Fourier Transform

(DFT) and Discrete Cosine Transform (DCT) to as-

sess the quality of sporting actions. OSATS skill crite-

ria depend on the different characteristics of the motion

performed by the surgeon (Table 1). For instance, an

expert surgeon’s movements are smooth with no un-

necessary moves as compared to stiff movements of a

novice surgeon. Thus, we need to analyze the changing

motion characteristics (motion dynamics) in the sur-

gical video. In addition, suturing and knot tying are

inherently repetitive tasks. Inspired by these advances,

a recent work used DFT and DCT features for auto-

mated video based skill assessment [10].

Our goal is to develop an automated, portable and

cost effective assessment system that replicates the tra-

ditional OSATS assessment without any manual inter-

vention. The RMIS works provide background and mo-

tivation for our work on surgical skill assessment. How-

ever, in this work our focus is on OSATS based skill

assessment in traditional setting with trainee surgeons

practicing basic surgical skills such as suturing and knot

tying. We note that video based OSATS assessment

techniques mainly use three types of features (1) Sym-

bolic: HMM, BoW and ABoW; (2) Texture: MT and

SMT; and (3) Frequency: DCT and DFT. In this work,

we build upon the work in [10] and provide a compar-

ative analysis of these features in a generalized frame-

work for video-based skill assessment. We test the dif-

ferent feature performances on two independently ac-

quired and diverse data-sets collected in a general surgi-

cal lab setting. Our results show that frequency features

outperform other feature types previously reported in

literature indicating its skill assessment potential for

medical schools and teaching hospitals.

3 Methodology

We use video based processing for evaluating the skill

level of each surgeon. The videos are initially prepro-

cessed and converted into a multi-dimensional time-

series which is then used to extract different types of

features which are used for skill classification. Figure

1 shows the proposed pipeline for the system. We have

divided the flow into three steps: (1) Motion class time-

series generation; (2) Feature modeling; (3)Feature se-

lection and classification. We will now discuss these

stages in detail.

3.1 Motion Class Time Series Generation

The first stage in our approach is to encode the mo-

tion in the videos and generating a motion class time-

series representation of each video. Many different types

of motion features have been proposed in the litera-

ture for extracting relevant information from video data

[23–25]. For our purpose, we use Spatio-Temporal In-

terest Points (STIPs) [26] proposed by Laptev in order

to encode the motion from the videos. Let V be the

set containing all the videos in our dataset. Then, for

all v ∈ V , a Harris3D detector is used to compute the

spatio-temporal second-moment matrix µ at each video

point given by

µ = g(.;σ2, τ2) ∗

 L2
x Lx LxLt

LxLy L2
y LyLt

LxLt LyLt L2
t

 (1)

where g(.;σ2, τ2) is a 3D Gaussian smoothing kernel

with a spatial scale σ and a temporal scale τ . Lx,y,t are

Fig. 2 Clustering STIPs into motion classes.
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Fig. 3 Motion class time series samples using K = 5 for a novice (left), an intermediate (center) and an expert (right) surgeon.
Note that the beginner motion is more frequent and exists in almost all frames for all motion classes as compared to fewer
motion for intermediate and expert surgeons. These sample plots were obtained from dataset-B (see the “Data Collection”
section for description of the dataset), represented by varied length of the time series.

gradient functions along the x, y and t domains. The

final position of the STIPs is then calculated by finding

the local maxima of the Harris corner function given by

H = det(µ)− ω(trace(µ))3 (2)

We use Laptev’s STIP implementation [27] with default

parameters and sparse feature detection mode for dif-

ferent spatio-temporal scales with ω set to be 0.005. We

then compute Histogram of of Optical Flow (HOF) and

Histogram of Oriented Gradients (HOG) on a three-

dimensional video patch in the neighborhood of each

detected STIP. A 4-bin HOG and a 5-bin HOF descrip-

tor is calculated resulting in 72-dimensional HOG vec-

tor and a 90-dimensional HOF vector. The final feature

vector for each STIP is obtained by concatenating HOG

and HOF vectors resulting in a 162-dimensional vector.

Once the STIPs for all videos are extracted, we learn

motion classes by using k-means clustering on STIPs

from two expert videos. Expert STIPs are used since

they are more distinct and uncluttered as compared to

non-experts. Therefore, expert motions provide exem-

plary templates for the surgical task to be evaluated.

The STIPs from experts are clustered using k-means

for different number of clusters ‘c’. Figure 2 shows a

sample frame with STIPs extracted and the cluster as-

signment of each STIP. The different colors in the right

image correspond to different clusters. The learned clus-

ters can be thought of as representing of the number of

moving parts in the video as evident in Figure 2 where

you can see different colored STIPS for the different

moving parts like hands, arms, instrument etc. The ex-

pert clusters are then used to transform the remaining

videos in the data set into a multi-dimensional time se-

ries. This is done by assigning each STIP in every frame

of the video to one of the ‘c’ learned clusters using min-

imum Mahalanobis distance from the cluster distribu-

tion. This results in a time series T ∈ <K×N repre-

senting each video, where K represents the dimension

of the time series (equivalent to the number of clusters

used in k-means) and N is the number of frames of the

video. Figure 3 shows some sample motion class time

series for a beginner, intermediate and an expert using

K = 5.

3.2 Feature Modeling

The features we use for our analysis are divided into

three categories: (1) Symbolic features; (2) Texture fea-

tures; and (3) Frequency features. The different type

of features in each category is described below. Note

that for description of each technique, we will use X ∈
<K×N to denote a time series where K is the dimension

of the time series and N being the number of frames of

the video

3.2.1 Symbolic Features

Previous state-of-the art has mostly focused on words-

based/symbolic methods for describing video and time-

series data for a variety of application like activity recog-

nition and skill categorization. In this category, we use

HMMs [28,29], Bag-of-Words (BoW) and Augmented

Bag-of-Words (ABoW) models [14,15].

HMM: We implemented HMM using semi-continuous

modeling with Gaussian mixture models (GMM) rep-

resenting the feature space [29]. We used k-means clus-

tering using different number of clusters to convert the

multi-dimensional time series data into a set of discrete

symbols n. The GMMs were obtained using an unsu-

pervised density learning procedure. The HMM was

trained using the classical Baum-Welch training for dif-

ferent number of states s and classification was done

using Viterbi-decoding.

BoW: BoW techniques represent the state-of-the-art

for video-based activity recognition. The BoW model
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is typically constructed using visual codebooks derived

from local spatio-temporal features. The clusters ob-

tained by clustering the HOG-HOF STIP feature vec-

tors form the vocabulary for our BoW codebook [15].

The STIPs are then mapped to the words in our vocab-

ulary which results in each video being represented by

a histogram of words. With this feature representation,

we then use a k-Nearest Neighbor (kNN) classification

back-end to categorize the videos into the various OS-

ATS skill categories.

ABoW: While BoW models are better than HMMs,

standard BoW techniques do not capture the under-

lying structural information, neither of causal nor of

sequential type, that is inherent by the ordering of the

words. To solve this problem, [14] introduced the Aug-

mented Bag-of-Words (ABoW) model that represents

temporal information by quantizing time and defining

new temporal words in a data-driven manner. Further-

more, the model uses n-grams to augment the BoW

with the discovered temporal events in a way that pre-

serves the local structural information (relative word

positions) of the activity. In addition, to discover the

global patterns in the data, the ABoW model uses ran-

domly sampled Regular-Expressions to find patterns

across the words within the activities. We built ABoW

models by augmenting our BoW models and, like be-

fore, used a kNN classification back-end to categorize

the skill levels.

3.2.2 Texture Features

Textural features have been shown to give good accu-

racy for skill classification of surgical skills [12]. We will

now describe the computation of texture features for

classification.

Motion Texture: Motion Texture (MT) encodes the

motion dynamics in a frame kernel matrix which is then

used to calculate texture features [12]. The time series

X ∈ <K×N , the frame kernel matrix M ∈ <N×N is

calculated using

M = φ(X)′φ(X) (3)

A Gaussian kernel function is used as a kernel function

and each element in the kernel matrix M , mi,j denotes

the similarity between the frame number i and j and is

given by

mi,j = exp(−||xi − xj ||
2

2σ2
) (4)

The matrix M is then used to derive textural statis-

tics using Gray-Level Co-occurrence Matrix (GLCM).

GLCM is obtained by calculating how often a pixel with

a certain intensity level occurs in a specific spatial re-

lationship to a pixel with different intensity level. The

final feature vector obtained is 20-dimensional.

Sequential Motion Texture: Sequential Motion Tex-

ture (SMT) extends MT by incorporating temporal in-

formation into the features [12]. The time series X ∈
<K×N is first divided into equally sized temporal win-

dows W such that each window contains equal propor-

tion of the STIPs corresponding to largest motion class

in a given video. Frame kernel matrices are calculated

for each time window using equation 3. The final GLCM

features are then calculated for each time window re-

sulting in a 20W -dimensional feature vector.

3.2.3 Frequency Features

Frequency based features have been widely used in var-

ious application exploiting the periodic nature of data.

Recently, works of [22] and [10] have shown that fre-

quency features work extremely well for assessing qual-

ity of actions like sports and basic surgical tasks. The

two types of frequency features used for our evaluation

are described below.

Discrete Fourier Transform: Discrete Fourier Trans-

form (DFT) is used to convert data from time domain

into frequency domain and has been extensively used

for many application across several domains. For our

time series X ∈ <K×N , we calculate the frequency coef-

ficients for each dimension independently and concate-

nate them to form the frequency matrix Q ∈ <K×N

[10]. The ith row in the frequency matrix Q, Q(i) is

calculated by

Q(i) = θX(i)′ (5)

where X(i) is the ith dimension of the time series X. θ

is an N ×N matrix and θ(m,n) is given by

θ(m,n) = exp(−j2πmn
N

), (6)

where {m,n} ∈ [0, 1, . . . , N − 1]. Once the matrix Q is

calculated, the higher frequency terms are removed in

order to eliminate noise. This results in a reduced ma-

trix Q̂ ∈ <K×F where F denotes the highest frequency

component used from each dimension of the time series

X. This can also be thought of as low-pass filtering of

the time series. The elements of Q̂ are then concate-

nated to form a final feature vector of KF dimensions.

Discrete Cosine Transform: Discrete Cosine Trans-

form (DCT) is also a transformation of data from time

domain to frequency just like DFT. However, DCT only

uses cosine functions instead of both sines and cosines.

This results in the DCT coefficients being real as op-

posed to DFT where the coefficients can be complex.
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Similar to DFT, the ith row of the frequency matrix

Q ∈ <K×N is also calculated using equation 5 [10] but

the θ matrix is given by

θ(0, n) =

√
1

N
, (7)

θ(m,n) =

√
2

N
cos(

π(2n+ 1)m

2N
), (8)

where {m,n} ∈ [0, 1, . . . , N − 1]. Similar to DFT, the

matrix Q is reduced to Q̂ ∈ <K×F and a final KF -

dimensional feature vector is obtained.

3.3 Feature Selection and Classification

The final feature vector obtained from the previous step

may contain many elements that may be redundant

(provide no more information) or irrelevant (contain

no useful information) to the skill level. In order to

tackle this, we reduce the number of elements in the fi-

nal feature vector by using feature selection. For our ex-

periments, we use Sequential Forward Selection (SFS)

to have a fair comparison between different techniques

since it has been used before in similar works [12,10].

Given a feature set Φ = {φi|i = [1, . . . , Z]}, SFS

aims to find a subset of features Φ̂ = {φ̂i|i = [1, . . . , U ]},
with U < Z by starting with an empty set and sequen-

tially adding the features that maximize the objective

function when combined with the features that have al-

ready been selected. We use a Nearest-Neighbor (NN)

classifier with cosine distance metric as a wrapper func-

tion for SFS.

4 Experimental evaluation

4.1 Data Collection

In order to test the performance of the various skill

assessment techniques, we collected two datasets in dif-

ferent settings. We will refer to them as “dataset-A”

and “dataset-B”. In dataset-A, each video was cap-

tured for a specified time and there was minimal in-

volvement of any other human, other than the par-

ticipant. In dataset-B, there were large variations in

the length of the video being captured along with de-

lays in the middle of the tasks and people were moving

around within the participant’s environment adding to

the noise in the motion captured. The suturing type

performed by participants in both datasets was a ‘run-

ning suture’ and there were variations in the number

of sutures performed by each participant. All the par-

ticipants in dataset-A were right-handed except for 2,

Fig. 4 Sample frames from the datasets. The top 4 images
are from dataset-A and the bottom 2 images are from dataset-
B.

whereas information regarding dominant hand for dataset-

B was not available. More specific details of data cap-

ture for both datasets are given below.

Dataset-A: This dataset contains videos captured from

18 recruited participants (surgical residents and nurse

practitioners). A standard camera was used for cap-

turing the videos while the participants performed the

surgical tasks wearing colored finger-less gloves. Each

participant performs two attempts of suturing and knot

tying each, resulting in 36 videos for knot tying and 35

videos for suturing (one video not used due to data

corruption). We collected 4000 and 1000 frames for su-

turing and knot tying respectively, at a resolution of

640×480 pixels and 30 frames per second. The camera

was placed at different angles in each attempt and the

data was captured in multiple rooms in order to make

the dataset invariant to view and illumination changes.

Dataset-B: This data set was collected by recruiting

16 new participants (medical students). Each partici-

pant performed suturing activity using a needle-holder,

forceps and the tissue suture pads. The session were

recorded using a standard camera with 1280× 720 pix-

els and 50 frames per second. Each session was recorded

in a separate video. An expert surgeon performed three

sessions giving a total of 33 videos. The number of
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frames for each recording varied largely with the av-

erage duration of the videos being 18 minutes each.

Figure 4 shows some of the sample frames from both

data sets for Suturing and Knot Tying tasks. Ground

truth for the OSATS score for both data sets were ob-

tained by showing the videos to an expert. Two inde-

pendant experts graded the two datasets respectively.

The training data was grouped into three skill levels:

beginner (OSATS ≤ 2) was given a score of 1, an in-

termediate (2 ≤ OSATS ≤ 3.5) was given a score of 2

and an expert (3.5 ≤ OSATS ≤ 5) was given a score

of 3. Table 3 gives the distribution of the different skill

levels for each class for the two datasets.

4.2 Parameter Estimation

The performance of each of the techniques described in

Section 3 are dependent on the values of parameters

that we need to learn. We select each of these param-

eters empirically. The following describes how each pa-

rameter (for the different proposed techniques) was se-

lected. All the experiments were performed using leave-

one-out cross-validation (LOOCV), where one video was

left out for testing in each experiment. Moreover, we

use 5-dimensional time series (K = 5) for estimating

parameters in this section. The optimum parameters

are selected based on average classification accuracy

CK
avg(P ), over all OSATS criteria for a specific parame-

ter set P . This is calculated by CK
avg(P ) = 1

O

O∑
o=1

CK
o (P )

, where CK
o (P ) represents the classification accuracy

for a respective OSATS criteria o and parameter set P

using K-dimensional time series, while O denotes the

total number of applicable OSATS criteria. The param-

eter set P̂ achieving highest Cavg is then used to run

experiments for all values of K in the next section.

4.2.1 Symbolic Features

We described three techniques in Section 3 under sym-

bol based feature representation. For BoW and ABoW,

the parameters proposed in [14] were used wherein the

BoW model was built using 50 clusters and augmented

using interspersed encoding with 3-grams, 5 time bins

and 20 random regular expressions. For HMM, we learned

the optimum value for the number of symbols n and

number of states s. We evaluate the classification rate

for all combinations of n and s, where n = [3, 4, ..., 10]

and s = [4, 8, 10, 12, 14]. Figure 5 show a plot showing

the variation in the average classification accuracy with

respect to varying n and s. The average classification

accuracy was calculated by taking the mean of the indi-

vidual classification percentages achieved. Each plot for

Fig. 5 Plots of average classification accuracy versus number
of states with varying number of discrete observation symbols.

a specific number of symbols was achieved by averaging

the classification accuracies over all the OSATS crite-

ria for the respective number of states. It can be seen

that using n = 7 and n = 10 seem to work best and

equally good and the classification rate stays constant

across varying s. However, the training time increases

significantly using higher number of states. Therefore,

we selected n = 7 and s = 4 to achieve best possible

accuracy while saving computation time.

4.2.2 Texture Features

For both MT and SMT, we use the standard Gray Level

Co-Occurrence Matrices (GLCM) with 8 gray levels.

However, for SMT, the performance is dependent on the

number of time windows W . In order to find the opti-

mum value for W , we calculate the classification rates of

varying the number of windows for W ∈ [6, 8, 10, 12, 14]

Fig. 6 Plots of classification accuracy versus number of win-
dows.
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Table 3 No. of samples for different expertise levels for dataset-A and dataset-B for each of the OSATS criteria (RT: Respect
for Tissue, TM: Time and Motion, IH: Instrument Handling, SH: Suture Handling, FO: Flow of Operation, OP: Overall
Performance). Within each cell, “S” refers to Suturing and “KT” refers to Knot Tying and “NA” corresponds to either
samples not available or the respective OSATS criteria being not applicable for the task.

Dataset-A (S: Suturing, KT: Knot Tying) Dataset-B (S: Suturing)
RT TM IH SH FO OP RT TM IH SH FO

Beginner
S: 5

KT: NA
S: 13
KT: 6

S: 13
KT: NA

S: 14
KT: 5

S:12
KT: 2

S: NA
KT: 2

S: 2 S: 9 S: 8 S: 10 S: 3

Intermediate
S: 20

KT: NA
S: 11

KT: 12
S: 10

KT: NA
S: 13

KT: 17
S: 14

KT: 19
S: NA
KT: 17

S: 14 S: 15 S: 16 S: 15 S: 16

Expert
S: 10

KT: NA
S: 11

KT: 18
S: 12

KT: NA
S: 8

KT: 14
S: 9

KT: 15
S: NA
KT: 17

S: 15 S: 7 S: 7 S: 6 S: 12

Fig. 7 Plots of average classification accuracy versus highest frequency component used from each dimension of the time
series. The left two plots are for dataset-A and the right most for dataset-B

on both data sets. Figure 6 shows a graph for classifica-

tion rate vs number of windows (W ). Again, we average

the classification accuracy over all the OSATS criteria

applicable for each value of W . As evident from the

plots, W = 10 seems to work best for both data sets.

For dataset-A, the accuracy seem to stay constant after

further increasing W whereas for dataset-B, the accu-

racy deteriorates after 10 time windows. Therefore, we

select W = 10 for our evaluation and result comparison

for SMT.

4.2.3 Frequency Features

As described in Section 3, DCT coefficients are always

real values whereas, DFT can have complex coefficients

as well. Therefore, the DCT coefficients are used as it

is whereas the absolute value of the DFT coefficients

is used to make sure they are real valued. For fre-

quency based methods described, the only parameter

that needs to be selected empirically is F which is the

highest frequency component selected from each dimen-

sion of the time series (or the cutoff frequency in the low

pass filter). Therefore, we calculate the classification ac-

curacy for F ∈ [25, 50, 100, 200, 500]. Figure 7 shows the

plots obtained for classification rate vs number of fre-

quency features used per dimension of the time series.

The accuracies were averaged over all OSATS criteria

for each value of F . The graphs depict a correlation be-

tween average accuracy and number of features (F ). We

select a value of 500 for both datasets as it embodies

a good tradeoff between accuracy and computational

time. We maintain F = 500 for our evaluation and re-

sults comparison.

5 Results

We evaluate the techniques described above on two di-

verse datasets and report the classification accuracy for

the different applicable OSATS criteria. For dataset-A,

there are two surgical tasks being assessed: Suturing

and Knot Tying. Therefore, we report the classification

results attained from the techniques described before

on both of them. However, dataset-B only has Suturing

task so the results are presented for just that.

Dataset-A: Figure 8 shows the heat maps for the

applicable OSATS criteria using the different type of

methods described in Section 3. We implement each

method for K ∈ [2, 3, . . . , 10], where K is the dimen-

sion of time series used. It is evident that there is an im-

provement in the classification as we move from Words/

Symbol based methods to Texture based to Frequency

based. SMT, DCT and DFT seem to be the top per-

forming features. Figure 9 shows some more detailed

plots of the classification accuracies for a better compar-

ison between the top three methods. Frequency based

features perform better than SMT for almost all the
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Fig. 8 Heatmaps showing the classification accuracies for the different OSATS criterion for Suturing and Knot Tying. The
columns of each heatmap show the different methods. We can see a clear improvement in accuracies from left to right (symbolic
features to frequency features).

OSATS criteria and for almost all the values of K. This

shows that frequency based features are more robust

across the different OSATS criteria and don’t seem to

depend too much on the dimension of the time series

used.

Dataset-B: The results from dataset-A clearly show

that words/symbol based method don’t seem to capture

the information relevant to the skill level of the surgeons

performing the basic surgical tasks. Moreover, texture

based feature without temporal information perform

poorly as well. Since this data set seem more tough

due to the variation in the length of the videos and

the noisy motion, we only evaluate and compare the

features which perform best on dataset-A i.e. SMT,

DCT and DFT. Figure 10 shows the classification re-

sults obtained using these 3 features. It is clearly ev-

ident from the graphs that frequency based features

DCT and DFT outperform the best performing tex-

ture based feature SMT by a good margin for almost

all OSATS criteria and for all values of K.

Table 4 gives the average classification rates for the

different techniques on both data sets. Each classifica-

tion is averaged over all OSATS and over all values of

K and is given by the equation

C ′avg =
1

9

10∑
K=2

1

O

O∑
o=1

CK
o (P̂ ) (9)

where P̂ was the optimum parameter set found in the

previous section. It is clear from the averaged results

that frequency based features out perform all other fea-

tures compared in this paper. DCT seem to be working

slightly better than DFT on average.
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Fig. 9 Plots showing classification rates for various OSATS criteria for dataset-A. The corresponding task (suturing or knot
tying) and the OSATS criteria for each plot are mentioned in the boxes.

Table 4 Classification accuracies for different features on both data sets. The classification rates were averaged over all OSATS
criteria and over all values of K (different number of dimensions of time series used for the evaluation) for each technique.

HMM BoW ABoW MT SMT DCT DFT
Dataset-A Suturing 47.4 63.3 63.1 64.3 84.4 98.4 97.7
Dataset-A Knot Tying 44.8 71.2 70.5 67.3 86.9 97.4 95.8
Dataset-B - - - - 78.1 98.1 97.6

6 Discussion

The results described above clearly show an increasing

trend in classification accuracies going from using sym-

bolic features to frequency features. Symbolic features

like BoW and ABoW are useful in classifying human ac-

tivities in general. Sufficient literature has shown their

efficacy in predicting what is being done in the video.

For example, RMIS works on gesture recognition [16],

and [15] reported good results for surgical gesture recog-

nition using BoW model. However, in their work, the

goal was to classify what (or which) gesture is the test

sample. Whereas, in skill assessment, it is essential to

assess the motion quality i.e. how competent the subject

is in performing the given activity. Therefore, symbolic

features performed poorly on evaluating skill for both

the data sets described in this paper.

A better representation for skill assessment was to

encode motion dynamics of the surgeons using texture

features. However, its important to note that texture

features without temporal information performed poorly

(this is also noted by [12]). SMT performed quite well

for skill classification for both data sets and is able to

capture the sequential information important for skill

differentiation. However, SMT is quite computationally

expensive due to the calculation of frame kernel matri-
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ces and the corresponding textural features. Moreover,

SMT also seem to be prone to noisy movements in the

video as their is a significant decrease in the average

classification accuracy for dataset-B (which had signif-

icant movements of people other than the performing

surgeon). That noted, SMT does give reasonably high

accuracy for skill classification.

The best features to encode the skill level of the sur-

geons performing basic surgical tasks were frequency

based i.e. DCT and DFT. The data sets used in this

paper for evaluations only had basic surgical tasks of

suturing and knot tying. Both of these activities con-

tain sequential periodic motion of the hands and arms

of the surgeon. Keeping this in mind, one could expect

that frequency based features might be able to extract

the relevant information for skill classification from the

time series data. And the results presented in this paper

do in-fact conform with this. Moreover, these frequency

based skill classification does not require the time series

to be divided into different windows nor does it require

any manually defined surgical gestures. Also, DCT and

DFT both are extremely robust to noisy movements

in the videos as evident from the average classification

rates given for both data sets in Table 4. This is mainly

because low pass filtering of the time series removes

such noise in the data, thus making them more robust

as compared to SMT. Another thing to note here is

that from Table 4, we see that DCT perform slightly

better than DFT on average. This can possible be be-

cause of not using DFT coefficients as is (since they are

complex). We used DCT coefficients in its original form

while taking the absolute for DFT. This results in loss

of some information which can cause a slightly lower

average classification accuracy for DFT.

In order to better understand the difference in the

top performing features quantitatively, we need to vi-

sualize the feature in their spaces. However, since the

dimension of the final feature vector is always much

greater than 3, it is very hard to visualize them as is.

Therefore, we used linear discriminant analysis (LDA)

to project the higher dimensional features onto a 2-

dimensional space. LDA was used for dimensionality

reduction here since it tries to model the difference be-

tween the classes and that would potentially result in

distinct class clusters in projected space if the data in

higher dimension also forms separated clusters. Figure

11 shows sample scatter plots for SMT, DCT and DFT

(from left most column to right most, respectively) fea-

tures after projecting them using LDA. It is interest-

ing to see that even after significant information loss

caused by dimensionality reduction, DCT and DFT

form pretty distinct clusters for each skill class whereas

there is significant overlap between skill classes clus-

ters for SMT. This shows that the selected frequency

features for each class in a higher dimension would be

sufficiently distinct, hence achieving classification accu-

racies upto 100%.

Our experiments in this paper showcase a promis-

ing method that uses videos for skill assessment for tra-

ditional surgical tasks of suturing and knot tying. We

believe that the proposed technique can be used for mo-

tion quality assessment in other types of data that have

repetitive motion patterns. For example, in RMIS, the

same pipeline of video processing could be used for skill

assessment involving tasks like suturing and knot ty-

ing. Furthermore, the proposed features for time series

analysis could be used for skill assessment using kine-

matic data in RMIS. However, in surgical tasks such

as cutting and dissection that do not involve repetitive

motions, frequency based features would probably be

unable to model the skill level of the surgeons.

7 Conclusion

In this paper, we presented a system for automated as-

sessment of basic surgical skill using video data. Videos

of surgical residents and nurse practitioners were classi-

fied into different OSATS skill groups. We implemented

and compared three different feature types for skill as-

sessment: Symbolic, Texture and Frequency. These fea-

ture types were evaluated on two diverse data sets. The

results presented in this paper clearly show that fre-

quency features (DCT and DFT) outperform the both

symbolic and texture features used on both data sets

with average classification accuracy reaching as high

98.7%.
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Fig. 10 Plots showing classification rates for various OSATS criteria for dataset-B. The corresponding OSATS criteria for
each plot are mentioned in the boxes.

Fig. 11 Sample scatter plots showing the distribution of the 3 skill classes after projecting the selected features onto a
two dimensional space using linear discriminant analysis (LDA). Left to right columns show scatter plots for SMT to DFT,
respectively. The top row plots were obtained using k = 4 for Respect for Tissue OSATS criteria. Whereas, the bottom row
plots were obtained using k = 7 for Instrument Handling OSATS criteria. All plots shown here were obtained from dataset-B.
The classification accuracy achieved in each case using all the selected features is also given in the boxes within each plot.


