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SUMMARY

Environments with people are complex, with many activities and events that

need to be represented and explained. The goal of scene understanding is to either

determine what objects and people are doing in such complex and dynamic environ-

ments, or to know the overall happenings, such as the highlights of the scene. The

context within which the activities and events unfold provides key insights that can-

not be derived by studying the activities and events alone. In this thesis, we show

that this rich contextual information can be successfully leveraged, along with the video

data, to support dynamic scene understanding.

We categorize and study four different types of contextual cues: (1) spatio-

temporal context, (2) egocentric context, (3) geographic context, and (4) environmen-

tal context, and show that they improve dynamic scene understanding tasks across

several different application domains.

We start by presenting data-driven techniques to enrich spatio-temporal context

by augmenting Bag-of-Words models with temporal, local and global causality in-

formation and show that this improves activity recognition, anomaly detection and

scene assessment from videos. Next, we leverage the egocentric context derived from

sensor data captured from first-person point-of-view devices to perform field-of-view

localization in order to understand the user’s focus of attention. We demonstrate

single and multi-user field-of-view localization in both indoor and outdoor environ-

ments with applications in augmented reality, event understanding and studying so-

cial interactions. Next, we look at how geographic context can be leveraged to make

challenging “in-the-wild” object recognition tasks more tractable using the problem

xi



of food recognition in restaurants as a case-study. Finally, we study the environmen-

tal context obtained from dynamic scenes such as sporting events, which take place

in responsive environments such as stadiums and gymnasiums, and show that it can

be successfully used to address the challenging task of automatically generating bas-

ketball highlights. We perform comprehensive user-studies on 25 full-length NCAA

games and demonstrate the effectiveness of environmental context in producing high-

lights that are comparable to the highlights produced by ESPN.

xii



CHAPTER I

INTRODUCTION

The human visual system has a remarkable capability of understanding complex and

dynamic scenes. Replicating this capability in automated systems has been an active

area of research within the computer vision community for the past two decades. A

“scene” is the environment where an action or event is occurring and contains active

or passive observers. The scene could be categorized as being “dynamic” if the camera

and/or the objects and people within the scene are in motion. Examples of dynamic

scenes that we use in this thesis include (1) a person wearing an egocentric camera,

walking around in a museum gallery and recording point-of-view videos (the camera

is in motion while the display pieces in the museum are fixed), (2) a person taking

a series of food pictures in a restaurant at regular intervals (the camera position is

relatively the same but the object being captured changes shape and size over time)

and (3) a camera recording videos of a sports game in a stadium (the camera is fixed

while the players in the scene are in motion).

Early research on scene understanding was mostly focused on scene classification,

image segmentation and object detection and recognition in static scenes (i.e. scenes

in still images). As the state-of-the-art moved towards more challenging real-world

“in-the-wild” images and videos, researchers started to look at other cues, such as

“context”, that could be leveraged for better scene understanding. Studies of the

human visual system have shown that context plays a crucial role in the way we per-

ceive and understand scenes. Let us start with a brief review of the study of context

followed by a review of the application of contextual cues for static scene understand-

ing. We then describe context for dynamic scenes, and provide and overview of the

1



work done in this thesis.

1.1 Importance of Context in Scene Understanding

Contextual cues play a very important role in the human visual system. Humans

extensively leverage context by looking at the global organizational structure of the

problem rather than making decisions using the immediate local structure [42]. Fur-

thermore, there is strong psychological evidence showing that context plays a crucial

role in scene understanding [12]. Useful contextual information can be derived from

low level visual features (such as color and texture) sampled over a wide receptive field

[128] and this information is used by the human visual system to perform rapid global

scene analysis before conducting more detailed local object analysis [84]. Further-

more, this contextual information is available early in the visual processing pipeline

and modulates the saliency of image regions and provides an efficient shortcut for

object detection and recognition [114].

1.2 Context In Static Scene Understanding

Inspired by the role of context in human visual perception, researchers started study-

ing the context surrounding objects and activities in images. Context in static scenes,

as defined in this thesis, is the spatial region surrounding the region-of-interest (ROI),

which could be a larger image patch around the ROI or the entire scene contained

within the image. In a given image, context is provided by the type of the scene, the

objects within the ROI and their relationship with each other. This can be studied

by jointly modeling and reasoning about objects and scenes [117, 107] and building

spatial context-aware models [103]. Local patch-based object detection can be im-

proved and local ambiguities can be resolved by looking at the whole image to get

the global context of the scene [83]. The relationship between objects and other re-

gions in the image can be modeled using Conditional Random Fields [60] and object

detection can be improved by estimating the rough 3D scene geometry from a single
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image [49]. Contextual information can also be used to go beyond object detection

and hierarchical models can be built to recognize sporting events in static images [68].

Apart from the contextual information provided by the relationship between ob-

jects and scenes, the presence of other objects and the relationship between the objects

within a scene also provides valuable contextual cues. Previous work has studied the

contextual information provided by the interdependence of objects, surface orienta-

tions and camera viewpoints [50], geometric consistency of objects [31], geometric

relationships between objects at local and global scales [45], joint spatial constraints

between objects in 2D and 3D imagery [106] and by modeling the relationship between

objects and other objects using Discriminative Random Fields (DRFs) [59]. Moving

beyond geometric and spatial relationships, semantic context has also been explored

by using “prepositions” and “comparative adjectives” instead of just “nouns” to ex-

press the relationship between objects [35], using contextual constraints such as co-

occurrence of objects in sports scenes for tasks such as classification, annotation and

segmentation [69] and by looking at the semantic relations between objects as post-

processing to off-the-shelf object categorization approaches [94]. Another interesting

work studied mutual boosting with multiple detectors of objects and parts (trained in

parallel using AdaBoost) for incorporating contextual information to improve object

detection [115].

Supported by the above listed advances in the state-of-the-art for static scene

understanding, we next explore, categorize and leverage contextual cues for dynamic

scenes in videos.

1.3 Context In Dynamic Scene Understanding

While the term “context” has multiple meanings in scene classification literature, for

dynamic scenes it almost always refers to the “spatio-temporal context”. This is the

information contained within the space-time video volume that encapsulates low-level

3



visual features that are computed using local and semi-local statistics. Research in

activity recognition from videos has explored spatio-temporal context in the form of

Bag-of-Words (BoW) models [126] and more recently with robust descriptors, which

exploit continuous object motion and integrate it with distinctive appearance features

[21], spatio-temporal features based on dense trajectories [125] and features learnt in

an unsupervised manner directly from video data [64].

Our research is aimed at expanding “spatio-temporal” context for videos by build-

ing more informative BoW models and exploring other types of contextual cues such

as “egocentric context”, “geographic context” and “environmental context” for bet-

ter dynamic scene understanding. These different types of context can be broadly

categorized into three classes:

1. Context that is part of the video data: This is the “spatio-temporal”

context that is contained within the space-time video volume that surrounds the

visual words of an activity. This type of context is baked into the video data and has

to be explicitly extracted and modeled. The vast majority of research in leveraging

context for dynamic scene understanding has focused on this particular context class.

2. Context that is concurrently collected from an external device co-

located with the camera: This is usually the contextual information obtained from

various sensors located on (or in close proximity to) the camera capturing the the

activity. Examples include “egocentric” context obtained from a first-person point-

of-view devices such as Google Glass that describes the person’s head orientation

information using devices such as accelerometers, gyroscopes and magnetometers;

and “geographic context”, obtained from GPS data that describes the location where

the activity is taking place. This type of context is captured concurrently with the

video data and can be treated as an additional stream of information.

3. Context provided by the environment: This is the “environmental”

context, captured using sensors in the environment where the activity is taking place,

4



such as audio, video and additional meta-data obtained from third-party observers in

the scene. The environmental context changes over time as factors in the environment

react to the ongoing activity.

Given these types of context, the thesis statement can be formulated as follows:

Contextual information can be extracted from the data, collected from

external sensors or gathered from the environment and can be effectively

leveraged, along with the temporally varying data, to improve dynamic

scene understanding. The following chapters are devoted to the development, sup-

port and explanation of this thesis statement with supporting evidence from several

different application domains.

1.4 Publications and Contributions

The following publications form the basis for this thesis:

• “Augmenting Bag-of-Words: Data-Driven Discovery of Temporal and Struc-

tural Information for Activity Recognition”, Vinay Bettadapura, Grant Schindler,

Thomas Ploetz, Irfan Essa, IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2013

• “Egocentric Field-of-View Localization Using First-Person Point-of-View De-

vices”, Vinay Bettadapura, Irfan Essa, Caroline Pantofaru, IEEE Winter Con-

ference on Applications of Computer Vision (WACV), 2015 (won the best paper

award)

• “Leveraging Context to Support Automated Food Recognition in Restaurants”,

Vinay Bettadapura, Edison Thomaz, Aman Parnami, Gregory Abowd, Irfan

Essa, IEEE Winter Conference on Applications of Computer Vision (WACV),

2015
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• “Automatic Generation of Basketball Highlights Using Contextual Cues”, Vinay

Bettadapura, Caroline Pantofaru, Irfan Essa, In Submission

Our contributions are as summarized below:

Leveraging Spatio-Temporal Context: While state of-the-art BoW models

are good at building powerful representations of the data, they completely ignore the

ordering of the particular words regarding their absolute and relative positions. Fur-

thermore, standard BoW approaches do not account for the fact that different types

of activities have different temporal signatures. We describe a method to represent

temporal information by quantizing time and defining new temporal events in a data-

driven manner. We propose three encoding schemes that use n-grams to augment

BoW with the discovered temporal events in a way that preserves the local word-

ordering information (relative word positions) in the activity. In addition, to discover

the global contextual patterns in the data, we introduce randomly sampled Regular

Expressions to augment our BoW models. Our proposed approach is evaluated on

four challenging scene-understanding tasks: vehicle activity recognition, surgical skill

assessment, unsupervised learning of player roles in soccer games and recognition of

human behaviors and anomaly detection in massive surveillance datasets.

Leveraging Egocentric Context: A key question in dynamic scene under-

standing: “What is the user looking at right now?” Automatically analyzing the

point-of-view (POV) data (images, videos and sensor data) to estimate egocentric

perspectives and shifts in the FOV remains challenging. Due to the unconstrained

nature of the data, no general FOV localization approach is applicable for all outdoor

and indoor environments. Our insight is to make such localization tractable by intro-

ducing a reference dataset (i.e., a visual model of the environment, which is pre-built

or concurrently captured, annotated and stored permanently) and to leverage the ego-

centric context (which is the captured POV data from one or more egocentric devices)

by matching and correlating it against this reference data-set allowing for transfer of

6



information from the user’s reference frame to a global reference frame of the envi-

ronment. The problem is now reduced from an open-ended data-analysis problem to

a more practical data-matching problem. Our method is applied to outdoor urban

environments, indoor presentations, egocentric tours in museums and analyzing joint

egocentric attention of groups of people.

Leveraging Geographic Context: We look at the challenging problem of “in-

the-wild” food recognition and show that leveraging geographic context helps make

the problem tractable [11]. We present an automatic workflow where online resources

are queried with contextual sensor data such as GPS to find food images and ad-

ditional information about the restaurant where the food picture was taken, with

the intent to build classifiers for food recognition. Our method is evaluated on food

images taken in 10 restaurants across 5 different types of cuisines (American, Indian,

Italian, Mexican and Thai). Using food and restaurants as the domain, we demon-

strate the value of geographic context for dynamic scene understanding. We believe

that the same method can be used for many other domains.

Leveraging Environmental Context: Sporting events such as basketball are

classic examples of dynamic scenes. The players are active and constantly on the

move, the audience is excited and cheering and there are several third party observers

within the scene such as referees, coaches, commentators and on-court statisticians.

Sporting environments such as stadiums and gymnasiums have broadcast cameras

that provide us with the video feed and are a rich source of environmental contextual

cues. The environment (the audience and the third-party observers within the scene)

reacts to the game as the game progresses. The audience cheer and the meta-data

provided by the on-court statisticians provide valuable information that can be lever-

aged to understand the sporting scene. An effective demonstration of dynamic scene

understanding is the automated production of basketball highlights. We analyzed 25
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full-length NCAA games and explored the use of four different environmental contex-

tual cues (“Score Differential”, “Player Ranking”, “Basket Type” and “Commentator

and Audience Audio”) along with a fifth cue derived from the video (“Motion”). Our

extensive user studies conducted using Mechanical Turk show the effectiveness of

combining these five cues in producing highlights that are comparable to the ones

produced by ESPN.

The following chapters describes each of the above contributions in detail.
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CHAPTER II

LEVERAGING SPATIO-TEMPORAL CONTEXT

We present data-driven techniques to enrich the spatio-temporal context provided

by Bag of Words models (BoW) by introducing Augmented Bag of Words (ABoW),

which allow for more robust modeling and recognition of complex long-term activities,

especially when the structure and topology of the activities are not known a priori

[10]. Our approach specifically addresses the limitations of standard BoW approaches,

which fail to represent the underlying temporal and causal information that is inher-

ent in activity streams. In addition, we also propose the use of randomly sampled

regular expressions to discover and encode patterns in activities. We demonstrate

the effectiveness of our approach in experimental evaluations where we successfully

recognize activities and detect anomalies in four complex datasets.

2.1 Introduction

Activity recognition in large, complex datasets has become an increasingly impor-

tant problem. Extracting activity information from time-varying data has applica-

tions in dynamic scene understanding such as video understanding, scene assessment

and surveillance for anomaly detection. Traditionally, sequential models like Hidden

Markov Models (HMMs) and Dynamic Bayesian Networks have been used to address

activity recognition as a time-series analysis problem. However, the assumption of

Markovian dynamics restricts the application of such sequential models to relatively

simple problems with known spatial and temporal structure of the data to be ana-

lyzed [118]. Similarly, syntactic methods like Parse Trees and Stochastic Context Free

Grammars [82, 54] are not well suited for recognizing weakly structured activities and

are not robust to erroneous or uncertain data.
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As a promising alternative, research in activity recognition from videos and other

time-series data started incorporating spatio-temporal contextual information by mov-

ing towards bag-of-words (BoW) approaches and away from the traditional sequential

and syntactic models. However, while BoW approaches are good at building power-

ful and sparser representations of the data, they completely ignore the ordering and

structural information of the particular words regarding their absolute and relative

positions. Furthermore, standard BoW approaches do not account for the fact that

different types of activities have different temporal signatures. Each event in a long-

term activity has a temporal duration, and the time that passes between each pair of

consecutive events, is different for different activities

In this thesis, we expand the role of spatio-temporal context by introducing novel

BoW techniques and extensions that explicitly encode the temporal and structural in-

formation gathered from the data. Recent activity recognition approaches such as [86]

have extended the BoW approach with topic models [122] using probabilistic Latent

Semantic Analysis [48] and Latent Dirichlet Allocation [13], leading to more complex

classification methods built on top of standard BoW representations. In contrast,

we increase the richness of the spatio-temporal context in the BoW representation

and with the use of standard classification backends (like k-NN, HMM and SVM),

we demonstrate that our augmented BoW techniques lead to better recognition of

complex activities.

Contributions: We describe a method to represent temporal information by

quantizing time and defining new temporal events in a data-driven manner. We pro-

pose three encoding schemes that use n-grams to augment BoW with the discovered

temporal events in a way that preserves the local structural information (relative

word positions) in the activity. This narrows the conceptual gap between BoW and

sequential models. In addition, to include more spatio-temporal context through the
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discovery the global patterns in the data, we augment our BoW models with ran-

domly sampled Regular Expressions. This sampling strategy is motivated by the

random subspace method as it is commonly used for decision tree construction [14]

and related approaches which have shown success in a wide variety of classification

and visual recognition problems [67].

We evaluate our approach in comparison to standard BoW representations on four

diverse classification tasks: i) Vehicle activity recognition from surveillance videos

(Section 2.4.1); ii) Surgical skill assessment from surgery videos (Section 2.4.2); iii)

Unsupervised learning of player roles in soccer videos (Section 2.4.3) and iv) Recogni-

tion of human behavior and anomaly detection in massive wide-area airborne surveil-

lance (simulation) data (Section 2.4.4). Recognition using our augmented BoW out-

performs the standard BoW approaches in all four datasets. We provide evidence that

this superior performance generalizes to any classification framework by demonstrat-

ing how sequential models (HMMs), instance based learning (k-NNs), and discrimina-

tive recognition techniques (SVMs) benefit from the new representation and outper-

form respective models trained on standard BoW. Finally, we show how augmented

BoW-based techniques successfully unveil further details of the analyzed datasets,

such as behavior anomalies.

2.2 Related Work

The Bag of Words (BoW) model was first introduced for Information Retrieval (IR)

with text [96]. Since then, it has been used extensively for text analysis, indexing

and retrieval [75]. Building on the success of BoW approaches for IR with text and

images, research in activity recognition has focused on working with BoW built using

local spatio-temporal features [124] and more recently with robust descriptors, which

exploit continuous object motion and integrate it with distinctive appearance features

[20], features based on dense trajectories [123] and features learnt in an unsupervised
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manner directly from video data [63].

While the focus has mostly been on recognizing human activities in controlled

settings, recent BoW based approaches have focused on recognizing human activities

in more realistic and diverse settings [62], and with the use of higher level semantic

concepts (attributes) that allow for more descriptive models of human activities [72].

However, when activities are represented as bags of words, the underlying sequential

information provided by the ordering of the words is typically lost. To address this

problem, n-grams have been used to retain some of the ordering by forming sub-

sequences of n items [75] (Figure 2). More recently, variants of the n-gram approach

have been used to represent activities in terms of their local event sub-sequences

[37]. While this preserves local sequential information and causal ordering, adding

absolute and relative temporal information results in more powerful representations

as we demonstrate in this chapter.

Our augmentation method is independent of the underlying BoW representation,

i.e., the modality of the data to be processed. The input to our algorithm is a

sequence of atomic events, i.e., words. On video data these can be either derived

from state-of-the-art short-duration event detectors (e.g., the Actom Sequence Model

[32], automatic action annotation [23]), or any other suitable feature detectors.

2.3 Activity Recognition with Augmented BoW

We define an activity as a finite sequence of events over a finite period of time where

each event in the activity is an occurrence. For example, if “start”, “turn”, “straight”

and “stop” are four individual events, then a vehicle driving activity will be a finite

sequence of those events over some finite time (e.g. “start→ straight→ turn→ stop→

start→ straight→ stop”). We call these events, that can be described by an observer

and have a semantic interpretation, as observable events.

Recent methods for activity recognition try to detect such observable events and
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build BoW upon it. However, the temporal structure underlying the activities that

shall be recognized is typically neglected. The time taken by each observable event

and the time elapsed between two subsequent events are two important properties

that contribute to the temporal signature of an activity that is being performed. For

example, a car at a traffic light will have a shorter time gap between the “stop” and

“start” events than a delivery vehicle that has to stop for a much longer time (until

its contents are loaded/unloaded) before it can start again.

2.3.1 Discovering Temporal Information

We represent activities as sequences of discrete, observable events. Let ω = {a1, a2,

a3, . . . , ap} denote a set of p activities, and let φ = {e1, e2, e3, . . . , eq} denote the set

of q types of observable events. Each activity ai is a sequence of elements from φ.

Each event type can occur multiple times at different positions in ai.

We now introduce temporal events. Let τj,k be the temporal event defined as the

time elapsed between the end of observable event ej and the start of observable event

ek, where k > j. Since it measures time, τj,k is non-negative. Also, let πj,k be the

temporal event defined as the time elapsed between the start of observable event ej

and the end of observable event ek, where k ≥ j. Thus, τj,k measures the time elapsed

between any two events whereas πj,k measure the time elapsed between any two events

including the time taken by those two events. Thus, τj,k and πj,k are related by the

equation πj,k = πj,j + τj,k + πk,k. We posit that these two types of temporal events,

τj,k and πj,k, can model all the temporal properties of an activity. The four possible

scenarios are listed here:

1. τj,j+1: Time elapsed between any two consecutive events ej and ej+1

2. τj,k: Time elapsed between any two events ej and ek, where k > j

3. πj,j: Time taken by a single event ej
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Figure 1: Histogram of event durations for Ocean City dataset (left) and data-driven
creation of temporal bins (right; N = 5).

4. πj,k: Time taken by set of events ej to ek, where k ≥ j

To work with these temporal events, we will have to quantize them into a finite

number of N bins. This quantization is crucial in allowing us to incorporate a notion

of time into BoW models. However, uniformly dividing the time-line into N bins

is not ideal. As illustrated by the temporal event duration histograms of τj,j+1 for

the Ocean-City dataset (see Section 2.4.1) in Figure 1, short and medium duration

temporal events occur much more frequently than longer duration temporal events.

Similar temporal distributions are observed in the other datasets we have analyzed.

To ensure that we capture the most useful temporal information, we pursue a data-

driven approach for binning. Bins are selected based on the distribution of temporal

events. If there are S temporal events, then we divide the temporal space into N

bins such that each of the N bins contains an equal proportion S/N of the temporal

events (illustrated in Figure 1 for N = 5). Note that, if the time-line had been naively

divided into 5 equally sized bins, then most of the temporal events would have been

placed in the first bin while the other 4 bins would have been almost empty. The

choice of N depends on the problem we are addressing. Lower values of N result in

increased loss of temporal information.

Example 1 : Say, temporal event τj,k is of 4 second duration and temporal event

τl,m is of 20 second duration, then from Figure 1, we see that τj,k will be assigned to

bin D and τl,m will be assigned to bin E. Let ψ denote the function that maps the

temporal events to their respective temporal bins. Then, we can say that ψ(τj,k) = D
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Figure 2: Building n-grams and their histogram (here n = 3) [37]

and ψ(τl,m) = E.

There are many possible ways by which we can encode these new temporal events

along with the observable events to build augmented BoW representations. The

simplest way would be to just add the quantized temporal events to the BoW, i.e., if

the BoW contained x observable events and we extracted y new quantized temporal

events, then the augmented BoW will now contain x+y number of elements. Although

this naive representation already gives better results than just the BoW (see Section

2.4), as shown in the next section, more sophisticated alternatives are possible.

2.3.2 Encoding Local Structure

In the following we describe three encoding schemes we have developed that merge

the temporal events with the observable events in a way that captures local structure.

2.3.2.1 Interspersed Encoding

In interspersed encoding, the main focus is on the time elapsed between every pair of

consecutive events. Let τj,j+1 be a temporal event defined as the time elapsed between

any two consecutive observable events ej and ej+1 in activity ai. Once the quantized

temporal events ψ(τj,j+1) are computed for all event pairs ej, ej+1 ∈ ai, they are then

inserted into ai at their appropriate positions between events ej and ej+1. Let this

new sequence of interspersed events for activity ai be denoted by Ti. In general, if

activity ai has d events, then after the inclusion of the quantized temporal events, Ti

will have 2d− 1 events (the original d observable events plus the new d− 1 temporal

events).
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Example 2 : For the activity a1 = (e1, e2, e3), we have T1 = (e1, ψ(τ1,2), e2, ψ(τ2,3),

e3). If temporal event τ1,2 is of 4 second duration and τ2,3 is of 20 second duration,

then the quantized temporal events will be ψ(τ1,2) = D and ψ(τ2,3) = E. So, the

interspersed sequence of events for activity a1, will be T1=(e1, D, e2, E, e3).

One of the main drawbacks of classical BoW representations is the loss of original

word orderings (i.e. local structural information). This is particularly adverse in

the context of activity recognition because activities correspond to causal chains of

observable and temporal events. Losing the ordering will result in a loss of all causality

and contextual information. We employ n-grams in order to retain ordering of events

[28]. An n-gram is a sub-sequence of n terms from a given sequence. Deriving n-grams

and their histograms from a given sequence is illustrated in Figure 2.

Using this approach, for every activity ai, the event sequence Ti is transformed

into an n-gram sequence T Ii (where the superscript I stands for interspersed). This T Ii

feature vector representing activity ai is the final result of interspersed encoding. From

Example 2, with n = 3, the event sequence T1=(e1, D, e2, E, e3) will be transformed

into the n-gram sequence T I1 = (e1De2, De2E, e2Ee3) or in its histogram form T I1 =

{e1De2 ⇒ 1, De2E ⇒ 1, e2Ee3 ⇒ 1} (denoted as key-value pairs where the key is the

n-gram and the value is its frequency).

2.3.2.2 Cumulative Encoding

In cumulative encoding, the main focus is on the cumulative time taken by a subse-

quence of observable events. Let ψ(πj,j+n−1) be a quantized temporal event defined

as the total time taken by n consecutive events ej to ej+n−1 in activity ai. Once

the quantized temporal event ψ(πj,j+n−1) is computed for the consecutive sequence of

observable events ej . . . ej+n−1 ∈ ai, it is appended to the set of the observable events.

Let this new sequence of “cumulative” observable and temporal events for activity ai

be denoted by TCi (where the superscript C stands for “cumulative”).
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Example 3 : If activity a2 = (e1, . . . , e5), n = 3, then TC2 = (e1e2e3ψ(π1,3),

e2e3e4ψ(π2,4), e3e4e5ψ(π3,5)). Say, π1,3 is of 4 second duration, π2,4 is of 20 sec-

ond duration and π3,5 is of 1 second duration and that ψ(π1,3) = D, ψ(π2,4) = E

and ψ(π3,5) = A. So, the new sequence of events for activity a2, will be TC2 =

(e1e2e3D, e2e3e4E, e3e4e5A) or in histogram form TC2 = {e1e2e3D ⇒ 1, e2e3e4E ⇒

1, e3e4e5A⇒ 1}.

Interspersed encoding focuses on the time elapsed between events whereas cumu-

lative encoding focuses on the time taken by the events.

2.3.2.3 Pyramid Encoding

Given the choice of encoding scheme —either interspersed or cumulative— in pyramid

encoding all l-grams of length l,∀l ∈ [1, n] are generated. Then we build a pyramid

of these l-grams allowing for processing of event sequences at multiple scales of res-

olution. We denote BoW representations for activity ai generated through pyramid

encoding by T Pi .

The output of each of these encoding schemes, i.e., T Ii , TCi and T Pi is the aug-

mented BoW model containing the observable and temporal events, encoded in a way

that captures the local structure.

2.3.3 Capturing Global Structure

While n-grams are good at capturing local information, their capability to capture

longer range relationships are rather limited. This is where regular expressions come

into play. Obviously, it is computationally intractable to enumerate all possible reg-

ular expressions for a given vocabulary of observable and temporal events. Thus,

given the set of observable events φ and the set of discovered temporal events N , we

construct a vocabulary of all events φ ∪ N denoted by Γ where |Γ| = |φ| + |N |, and

create a sub-space of regular expressions by restricting their form to:
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∧ . ∗ (α) (β1 | . . . | βr)ϕ (γ) . ∗ $ (1)

where the symbols α, βi, γ ∈ Γ with i ∈ [1, r] and r = rand (1, |Γ|). The symbol

ϕ is randomly set to one of the three quantifier characters: {∗,+, ?}. The special

characters have the following meaning: “ ∧ ” matches the start of the sequence, “.”

matches any element in the sequence, “ ∗ ” matches the preceding element zero or

more times, “ + ” matches the preceding element one or more times, “?” matches the

preceding element zero or one time and “$” matches the end of the sequence. The “|”

operator matches either of its arguments. For example, e1(e2|e3)e4 will match either

e1e2e4 or e1e3e4.

The first symbol that will be matched (α) and last symbol that will be matched

(γ) are chosen randomly from Γ using probability-proportional-to-size sampling (PPS)

and the r intermediate symbols βi are chosen randomly from Γ using simple random

sampling (SRS). PPS concentrates on frequently occurring events and picks the first

and last symbols in the regular expression to be the ones that have the greatest impact

on the population estimates whereas SRS chooses each of the intermediate symbols

with equal probability, thus giving a fair chance for all events to equally participate

in the matching process. The results of our experimental evaluation suggest that

this combination of PPS-SRS sampling of the regular expression subspace strikes the

right balance between discovering global patterns across activities and discovering the

anomalous activities.

Regular expressions of the above form are randomly generated and those that

do not match at least one of the activities/event-sequences are rejected. Accepted

regular expressions are treated as new words and added to our augmented BoW repre-

sentation. This final representation now contains automatically discovered temporal

information and both local and global structural information of the activities. Our
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experiments show that increasing the number of words in BoW through randomly gen-

erated regular expressions by just 20% boosts the activity recognition and anomaly

detection results significantly (Section 2.4).

2.3.4 Activity Recognition

Activity recognition using augmented BoW is pursued in a straightforward manner

by feeding the time-series data in their novel representation into statistical modeling

backends. Note that there is in principle no limitation on the kind of classification

framework to be employed. In Section 2.4 we present results for instance based

learning (k-NN), sequential modeling (HMM), and discriminative modeling (SVM).

Given videos or time-series data of activities, temporal information is discovered

using the histogram method described in Section 2.3.1. Using n-grams, the temporal

information is then merged with the extracted BoW thereby preserving local ordering

of the words. The new BoW model is then further augmented by adding new words

created using randomly sampled regular expressions (to capture global patterns in

the data), and then processed by the statistical modeling backend for actual activity

recognition.

2.4 Experimental Evaluation

The methods presented in this chapter were developed in order to improve BoW-

based activity recognition, thereby aiming for generalization across application do-

mains. For practical validation, we have thus evaluated our approaches in a range

of experiments that cover three diverse classes of learning problems (binary classifi-

cation, multi-class classification, and unsupervised learning) across four challenging

datasets from different domains.

Optimization of the estimation procedure for augmented BoW representations

involves the two main parameters in our system: N , the number of temporal bins

used for quantization and n, the size of the n-gram used for encoding. Low values
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of N and n result in the loss of temporal and structural information whereas high

values can lead to large BoW with very high dimensionality. The optimal values for N

and n are determined by standard grid search [18]. Within a user supplied interval,

all grid points of (N ,n) are tested to find the combination that gives the highest

accuracy. 50% of the particular datasets is held-out for parameter optimization, and

the remaining 50% is used for model estimation using cross-validation. This provides

an unbiased estimate of the generalization error and prevents over-fitting.

The main evaluation criterion for all activity recognition experiments is classi-

fication accuracy, which we report as absolute percentages and, for more detailed

analysis, in confusion matrices. For the first set of experiments (Section 2.4.1) we

compare three different classification backends (k-NNs with cosine-similarity distance

metric, HMMs, and SVMs) and explore their capabilities in systematic evaluations of

their parameter spaces. Due to space constraints the presentation of results for the

remaining set of experiments is limited to those achieved with the k-NN classification

backend. These results are, however, representative for all three types of classifiers

evaluated.

k-NNs with cosine-similarity distance metric, i.e. Vector Space Models (VSM),

treat the derived BoW vectors of activities as document vectors and allow for au-

tomatic analysis in terms of querying, classifying, and clustering the activities [75].

Prior to classification, each term in our augmented BoW is assigned a weight based on

its term-frequency and document-frequency in order to obtain a statistical measure of

its importance. Classification is done using leave-one-out cross-validation (LOOCV).

HMM-based experiments employ semi-continuous modeling with Gaussian mix-

ture models (GMM) as feature space representations [28]. GMMs are derived by

means of an unsupervised density learning procedure. All HMMs are based on lin-

ear left-right topologies with automatically derived model lengths (based on training

data statistics), and are trained using classical Baum-Welch training. Classification is
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Figure 3: Sample frame from Ocean City data showing the various objects being
tracked.

pursued using Viterbi-decoding. Parameter estimation and model evaluation employs

10-fold cross-validation.

Experiments on SVMs are carried out in 10-fold cross-validation using LibSvm

with an RBF kernel. Parameter optimization utilizes a grid-search procedure as it is

standard for finding optimal values for C and γ [18].

2.4.1 Ocean City Surveillance Data

The first dataset consists of 7 days of uncontrolled videos recorded at Ocean City,

USA [89]. The input video was stabilized and geo-registered and 2, 140 vehicle tracks

were extracted using background subtraction and multi-object tracking [89] (Figure

3). An event detector analyzed the tracks, detected changes in structure over time

and represented each track by a sequence of observable events. The types of events

detected in each track were “start”, “stop”, “turn” and “u-turn”.

Out of the 2, 140 vehicle tracks, 448 vehicles are either entering or exiting parking

areas on either side of the road (Figure 3). The recognition objective is to determine

whether or not vehicles are involved in parking activities.

With the empirically determined optimal values of N = 2 and n = 2, we perform

binary classification. The results are shown in Figure 4. For k-NN based experiments,
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Figure 4: Classification results for Ocean City dataset. Our encoding schemes out-
perform the BoW baseline on three classification backends: VSM, sequential models
(HMMs) and SVMs.

ROC curves were generated by varying the acceptance threshold. Augmenting BoW

with temporal information (bag-of-words + time) improves the results over the BoW

baseline. The performance is further improved with our proposed Interspersed, Cu-

mulative and Pyramid encoding schemes. However, the best results are obtained

when we augment our BoW with randomly generated regular expressions.

Figure 4 also shows the performance of HMM and SVM based recognition backends

using augmented BoW representations. Both techniques produce fixed decisions based

on maximizing models’ posterior probabilities, i.e., no threshold-based post-processing

is applied for the actual recognition. Consequently, ROC curves are not applicable,

and the particular results are shown as points in the figure.

Analyzing the evaluation results, it becomes evident that: i) our proposed encod-

ing schemes outperform the BoW baseline; and ii) superior classification accuracy

generalizes across recognition approaches (k-NN, HMM, SVM), with largest gain for

Vector Space Models.
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Figure 5: Long-range (left) and close-up (right) stills of video footage from training
sessions for surgical skill assessment. Participants practice suturing using regular
instruments and suture pads.

2.4.2 Surgical Skill Assessment

The second set of experiments is related to evaluating surgical skills as it is standard

routine in practical training of medical students. As part of a larger case-study,

16 medical students were recruited to perform typical suturing activities (stitching,

knot tying, etc.) using regular instruments and tissue suture pads. Both long-range

and close-up videos of these “suturing” procedures were captured at 50 fps at a

resolution of 720p (sample still images in Figure 5). As part of the training procedure,

participants completed 2 sessions with 2 attempts in each session, resulting in a total

of 64 videos. Ground truth annotation was done by an expert surgeon who assessed

the skills of the participants using a standardized assessment scheme (OSATS [76])

based on 7 different metrics (Table 1) on a three-point scale (low competence, medium,

and high skill).

Harris3D detectors and histogram of optical-flow (HOF) descriptors [124] are used

to extract visual-words from the surgery videos. BoW are built with vocabularies

constructed using k-means clustering (with k = 50), and then augmented using our

techniques. Table 1 summarizes our experiments (using k-NN classification backend)

and gives comparisons with the BoW baseline. It can be seen that augmented BoW

based approaches outperform the BoW baseline in all 7 skill metrics with an overall

accuracy of 72.56%.

23



Table 1: Surgical skill assessment using OSATS assessment scheme [76]. Ground
truth annotation provided by an expert surgeon who assessed the training sessions
using 7 different metrics (rows) and a three-point scale (low competence, medium,
and high skill). Results given are accuracies from automatic recognition using k-
NN, replicating expert assessment based on video footage of the training sessions.
Our encoding (Interspersed encoding with 3-grams, 5 time bins and with 20 random
regular expressions) outperforms the BoW baseline on all 7 metrics.

M1: M2: M3:

BOW baseline BOW + Time Our encoding

Respect for tissue 66.67% 69.84% 73.02%
Time and motion 50.79% 66.67% 74.60%
Instrument handling 50.79% 65.08% 68.25%
Suture handling 69.84% 69.84% 73.02%
Flow of operation 49.21% 63.49% 66.67%
Knowledge of procedure 60.32% 74.60% 80.95%
Overall performance 52.38% 68.25% 71.43%
Average accuracy 57.14% 68.25% 72.56%

Since our augmented BoW representations capture time and co-occurrence of

words, we hypothesized that an automated analysis procedure using augmented BoW

should perform particularly well in assessing the “time and motion” and “knowledge of

procedure” skills. Recognition results reported in Table 1 indicate that this is indeed

the case. The classification accuracies are 74.60% and 80.95% (an increase of 23.81%

and 20.63% respectively, over the BoW baseline), thus validating our hypothesis.

2.4.3 Learning Player Activities from Soccer Videos

Automatic detection, tracking and labeling of the players in soccer videos is criti-

cal for analyzing team tactics and player activities. Previous work in this area has

mostly focussed on detecting and tracking the players, recognizing the team of the

players using appearance models and detecting short-duration player actions. In our

experiments, we consider the problem of unsupervised learning of long-range activ-

ities and roles the various players take on the field. Given their tracks, we cluster

them into 7 clusters: “Team-A-Goalkeeper”, “Team-A-Striker”, “Team-A-Defense”,

“Team-B-Goalkeeper”, “Team-B-Striker”, “Team-B-Defense” and “Referee”.
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Figure 6: Sample stills from soccer videos dataset. Left: The 24 objects being
tracked: 22 players from both teams, referee and the ball. Right: The 4 zones used
by our event detector: Zone-A (Red), Zone-B (Yellow), Zone-C (Green) and Zone-D
(Blue).

We analyzed full length match videos (720p at 59.94 fps) from the Disney Research

soccer games dataset and tracked the 24 objects (players, referee, and ball) on the field

using a multi-agent particle filter based framework [36] (Figure 6). The tracks were

given to an event detector that divided the field into 4 zones (Figure 6) and detected 10

types of events: “Enter-Zone-A”, “Leave-Zone-A”, “Enter-Zone-B”, “Leave-Zone-B”,

“Enter-Zone-C”, “Leave-Zone-C”, “Enter-Zone-D”, “Leave-Zone-D”, “Receive-Ball”

and “Send-Ball”. With this vocabulary of 10 events, we built augmented BoW and

clustered them using k-means clustering where k = 7. Clustering results are given in

Table 2. It can be seen that augmented BoW outperform the BoW baseline on all

3 cluster quality metrics. In a supervised setting, we achieve an accuracy of 82.61%,

which is a 17.39% improvement over the BoW baseline (which is 65.22%).

Table 2: Cluster quality on soccer videos dataset. The 3 metrics used are Rand Index
(RI), Adjusted Rand Index (ARI) and Normalized Mutual Information (NMI). Our
encoding (Interspersed encoding with 3-grams, 3 time bins and 20 random regular
expressions) gives better cluster quality than the BoW baseline.

RI ARI NMI

BOW baseline 0.7984 0.2922 0.6147

BOW + Time 0.8300 0.3920 0.6974

Our Encoding 0.8261 0.5244 0.7462
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Figure 7: Results on WAAS dataset: Left: BoW baseline; Middle: BoW + Time;
Right: Our encoding (5-grams, 5 time bins and with 1, 000 random regular expres-
sions). Overall improvement of 30.04% is observed with our method (compared to
standard BoW baseline).

2.4.4 Wide Area Airborne Surveillance (WAAS)

In order to evaluate the applicability and scalability of our approach on massive

datasets with several hundreds of thousands of activities, we consider the Wide-Area

Airborne Surveillance (WAAS) simulation dataset.

The WAAS dataset was developed by the U.S. Military as part of their Activity

Based Intelligence (ABI) initiative. The goal is to capture motion imagery from an

airborne platform that provides persistent coverage of a wide area, such as a town or

a small city, and merge the automatically captured data from the aerial station with

intelligence gathered by ground forces to build a surveillance database of humans and

vehicles in that area. In order to aid research in this area, the WAAS dataset has been

released, which contains Monte Carlo simulation of the activities of 4, 623 individuals

for a total duration of 46.5 hours generated in 1 minute increments. There are a total

of 180 events (like “Eat Lunch”, “Enter Vehicle”, “Exit Vehicle”, “Move”, “Wait”,

etc) with a total of 544, 777 event sequences spread across 28, 682 buildings. Ground

truth labels are available on the 10 different professions of all the individuals. 23 out

of the 4, 623 individuals are suspected to be part of a terror group.

Given this large database, we show that our augmented BoW can successfully
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Table 3: McNemar’s tests on statistical significance between the different methods on
the 2 multi-class classification problems. Each column compares two methods. Left:
Comparing the methods in Figure 7 for the WAAS dataset; Right: Comparing the
methods in Table 1 for the “knowledge of procedure” skill in the surgery dataset (the
other 6 skill classifications were also statistically significant, but are not shown due
to space constraints).

M1 vs M2 M1 vs M3

χ2 165.09 530.35

p-value <0.0001 0.0026

M1 vs M2 M1 vs M3

χ2 4.76 9.33

p-value 0.0291 0.0023

classify people’s professions and detect some of the suspect individuals based on the

temporal and structural similarities in their activities. Classification accuracies and

confusion matrices are shown in Figure 7. Note that, with our encoding, more than

a third of the suspect group are correctly classified which baseline methods failed to

capture. This successful identification of suspicious behavior is especially remarkable

since those suspects aim for imitating “normal“ behavior and thus their activities are

very similar to harmless activities.

2.4.5 Test for Statistical Significance

With McNemar’s chi-square test (with Yates’ continuity correction), we check for

the statistical significance between the results of our two multi-class classification

problems (Figure 7 and Table 1). For the surgery dataset, though all the 7 skill

classifications were statistically significant, due to space constraints, only results on

“knowledge of procedure” classification is presented.

The null hypothesis is that the improvements are due to chance. However, as

shown in Table 3 for both the datasets, the χ2 values are greater than the critical

value (at 95% significance level) of 3.84 and the p-values are less than the significance

level (α) of 0.05. Thus, the null hypothesis can be rejected and we can conclude that

the improvements obtained with our methods are statistically significant.
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2.4.6 Evaluation Strategy

We evaluated our approach on four diverse classification tasks and used the evaluation

strategies that were relevant to the application. Supervised classification was used to

evaluate our understanding of vehicle behaviors, detection of skill levels in surgeons

and detect anomalies in large surveillance datasets. Results were presented in the

form of ROC curves and classification percentages. For functional categorization

of Soccer players, we used unsupervised learning to cluster the players into similar

groups based on their functionality on the field and presented the results in terms of

cluster quality.

While the evaluation strategy in this chapter is based on classic ML approaches

such as supervised and unsupervised learning, we will see in the later chapters that

we adapt our learning and evaluation strategy to suit the application and the dataset

in-hand.

2.5 Conclusion

Spatio-temporal context using BoW models are a promising approach to real-world

activity recognition problems where only little is known a-priori about the underlying

structure of the data to be analyzed. We presented a significant extension to BoW-

based activity recognition, where we augment BoW with temporal information and

with both local and global structural information, using temporal encoding, n-grams

and randomly sampled regular expressions, respectively.

We showed that, in addition to generally improved activity recognition, our ap-

proach also detects skill levels and anomalies in the data, which is important, for

example in human behavior analysis applications. We have demonstrated the ca-

pabilities of our approach on real-world vision problems and on massive wide-area

surveillance simulations.
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CHAPTER III

LEVERAGING EGOCENTRIC CONTEXT

In this chapter, we present a technique that leverages the egocentric context by us-

ing images, videos and sensor data taken from first-person point-of-view devices to

perform egocentric field-of-view (FOV) localization [9]. We define egocentric FOV lo-

calization as capturing the visual information from a person’s field-of-view in a given

environment and transferring this information onto a reference corpus of images and

videos of the same space, hence determining what a person is attending to. Our

method matches images and video taken from the first-person perspective with the

reference corpus and refines the results using the first-person’s head orientation in-

formation obtained using the device sensors. We demonstrate single and multi-user

egocentric FOV localization in different indoor and outdoor environments with appli-

cations in augmented reality, event understanding and studying social interactions.

3.1 Introduction

A key requirement in the development of interactive computer vision systems is mod-

eling the user, and one very important question is “What is the user looking at right

now?” From augmented reality to human-robot interaction, from behavior analysis

to healthcare, determining the user’s egocentric field-of-view (FOV) accurately and

efficiently can enable exciting new applications. Localizing a person in an environ-

ment has come a long way through the use of GPS, IMUs and other signals. But such

localization is only the first step in understanding the person’s FOV.

The new generation of devices are small, cheap and pervasive. Given that these de-

vices contain cameras and sensors such as gyros, accelerometers and magnetometers,

and are Internet-enabled, it is now possible to obtain large amounts of first-person

29



point-of-view (POV) data unintrusively. Cell phones, small POV cameras such as

GoPros, and wearable technology like Google Glass all have a suite of similar useful

capabilities. We propose to use data from these first person POV devices to derive

an understanding of the user’s egocentric perspective. In this chapter we show results

from data obtained with Google Glass, but any other device could be used in its

place.

Automatically analyzing the POV data (images, videos and sensor data) to esti-

mate egocentric perspectives and shifts in the FOV remains challenging. Due to the

unconstrained nature of the data, no general FOV localization approach is applicable

for all outdoor and indoor environments. Our insight is to make such localization

tractable by introducing a reference data-set, i.e., a visual model of the environment,

which is either pre-built or concurrently captured, annotated and stored permanently.

All the captured POV data from one or more devices can be matched and correlated

against this reference data-set allowing for transfer of information from the user’s

reference frame to a global reference frame of the environment. The problem is now

reduced from an open-ended data-analysis problem to a more practical data-matching

problem. Such reference data-sets already exist; e.g., Google Street View imagery ex-

ists for most outdoor locations and recently for many indoor locations. Additionally,

there are already cameras installed in many venues providing pre-captured or concur-

rently captured visual information, with an ever increasing number of spaces being

mapped and photographed. Hence there are many sources of visual models of the

world which we can use in our approach.

Contributions: We present a method for egocentric FOV localization that directly

matches images and videos captured from a POV device with the images and videos

from a reference data-set to understand the person’s FOV. We also show how sensor

data from the POV device’s IMU can be used to make the matching more efficient

and minimize false matches. We demonstrate the effectiveness of our approach across

30



4 different application domains: (1) egocentric FOV localization in outdoor envi-

ronments: 250 POV images from different locations in 2 major metropolitan cities

matched against the street view panoramas from those locations; (2) egocentric FOV

localization in indoor spaces: a 30 minute POV video in an indoor presentation

matched against 2 fixed videos cameras in the venue; (3) egocentric video tours at

museums: 250 POV images of paintings taken within 2 museums in New York City

(Metropolitan Museum of Art and Museum of Modern Art) matched against indoor

street view panoramas from these museums (available publicly as part of the Google

Art Project [2]); and (4) joint egocentric FOV localization from multiple POV videos:

60 minutes of POV videos captured concurrently from 4 people wearing POV devices

at the Computer History Museum in California, matched against each other and

against indoor street view panoramas from the museum.

3.2 Related Work

Localization: Accurate indoor localization has been an area of active research [46].

Indoor localization can leverage GSM [91], active badges [127], 802.11b wireless eth-

ernet [61], bluetooth and WAP [3], listeners and beacons [93], radiofrequency [8]

technologies and SLAM [66].

Outdoor localization from images or video has also been explored, including meth-

ods to match new images to street-side images [98, 134, 99]. Other techniques include

urban navigation using a camera mobile phone [95], image geo-tagging based on travel

priors [55] and the IM2GPS system [44].

Our approach leverages these methods for visual and sensor data matching with

first-person POV systems to determine where the user is attending to.

Egocentric Vision and Attention: Detecting and understanding the salient

regions in images and videos has been an active area of research for over three decades.

Seminal efforts in the 80s and 90s focused on understanding saliency and attention
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from a neuroscience and cognitive psychology perspective [116]. In the late 90s, Illti et

al. [52] built a visual attention model using a bottom-up model of the human visual

system. Other approaches used graph based techniques [43], information theoretical

methods [15], frequency domain analysis [51] and the use of higher level cues like

face-detection [17] to build attention maps and detect objects and regions-of-interests

in images and video.

In the last few years, focus has shifted to applications which incorporate attention

and egocentric vision. These include gaze prediction [70], image quality assessment

[87], action localization and recognition [101, 27], understanding social interactions

[26] and video summarization [65]. Our goal in this work is to leverage image and

sensor matching between the reference set and POV sensors to extract and localize

the egocentric FOV.

3.3 Egocentric FOV Localization

The proposed methodology for egocentric FOV localization consists of five compo-

nents: (i) POV data consisting of images, videos and head-orientation information,

(ii) a pre-captured or concurrently captured reference dataset, (iii) robust matching

pipeline, (iv) match correction using sensor data, and (v) global matching and score

computation. An overview of our approach is shown in Figure 8. Each step of the

methodology is explained in detail below.

3.3.1 Data collection

POV images and videos along with the IMU sensor data are collected using one

or more POV devices to construct a “pov-dataset”. For our experiments, we used

a Google Glass. It comes equipped with a 720p camera and sensors such as ac-

celerometer, gyroscope and compass that lets us effectively capture images, videos

and sensor data from a POV perspective. Other devices such as cell-phones, which

come equipped with cameras and sensors, can also be used.
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Figure 8: An overview of our egocentric FOV localization system. Given images (or
videos) and sensor data from a POV device, and a pre-existing corpus of canonical
images of the given location (such as Google street view data), our system localizes
the egocentric perspective of the person and determines the person’s region-of-focus.

3.3.2 Reference dataset

A “reference-dataset” provides a visual model of the environment. It can either be

pre-captured (and possibly annotated) or concurrently captured (i.e. captured while

the person with the POV device is in the environment). Examples of such reference

datasets are Google Street View images and pre-recorded videos and live video streams

from cameras in indoor and outdoor venues.

3.3.3 Matching

Given the person’s general location, the corresponding reference image is fetched

from the reference-dataset using location information (such as GPS) and is matched

against all the POV images taken by the person at that location. Since the camera is

egocentric, the captured image provides an approximation of the person’s FOV. The

POV image and the reference image are typically taken from different viewpoints

and under different environmental conditions which include changes in scale, illumi-

nations, camera intrinsics, occlusion and affine and perspective distortions. Given

the “in-the-wild” nature of our applications and our data, our matching pipeline is
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designed to be robust to these changes.

In the first step of the matching pipeline, reliable interest points are detected

both in the POV image, Ipov, and the reference image, Iref using maximally stable

extremal regions (MSER). The MSER approach was originally proposed by [77], by

considering the set of all possible thresholdings of an image, I, to a binary image, IB,

where IB(x)=1 if I(x) ≥ t and 0 otherwise. The area of each connected component

in IB is monitored as the threshold is changed. Regions whose rates of change of area

with respect to the threshold are minimal are defined as maximally stable and are

returned as detected regions. The set of all such connected components is the set of all

extremal regions. The word extremal refers to the property that all pixels inside the

MSER have either higher (bright extremal regions) or lower (dark extremal regions)

intensity than all the pixels on its outer boundary. The resulting extremal regions are

invariant to both affine and photometric transformations. A comparison of MSER

to other interest point detectors has shown that MSER outperforms the others when

there is a large change in viewpoint [81]. This is a highly desirable property since

Ipov and Iref are typically taken from very different viewpoints. Once the MSERs are

detected, standard SIFT descriptors are computed and the correspondences between

the interest points are found by matching them using a KD tree, which supports fast

indexing and querying.

The interest point detection and matching process may give us false correspon-

dences that are geometrically inconsistent. We use RANSAC (random sample con-

sensus) [29] to refine the matches and in turn eliminate outlier correspondences that

do not fit the estimated model. In the final step, the egocentric focus-of-attention is

transferred from Ipov to Iref . Using three of the reliable match points obtained after

RANSAC, the affine transformation matrix, A, between Ipov and Iref is computed.

The egocentric focus-of-attention fpov is chosen as the center of Ipov (the red dot in

Figure 8). This is a reasonable assumption in the absence of eye-tracking data. The
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focus-of-attention, fref , in Iref , is given by fref = Afpov.

3.3.4 Correction using sensor data

The POV sensor data that we have allows us to add an additional layer of correction to

further refine the matches. Modern cellphones and POV devices like Glass come with

a host of sensors like accelerometers, gyroscopes and compasses and they internally

perform sensor fusion to provide more stable information. Using sensor fusion, these

devices report their absolute orientation in the world coordinate frame as a 3 × 3

rotation matrix R. By decomposing R, Euler angles ψ (yaw), θ (pitch), φ (roll) can

be obtained. Since Glass is capturing sensor data from a POV perspective, the Euler

angles give us the head orientation information, which can be used to further refine

the matches. For example, consider a scenario where the user is looking at a high-rise

building that has repetitive patterns (such as rectangular windows), all the way from

bottom to the top. The vision-based matching gives us a match at the bottom of

the building, but the head orientation information suggests that the person is looking

up. In such a scenario, a correction can be applied to the match region to make it

compatible with the sensor data.

Projecting the head orientation information onto Iref , gives us the egocentric

focus-of-attention, fs, as predicted by the sensor data. The final egocentric FOV

localization is computed as: f = αfs + (1 − α)fref , where α is a value between 0

and 1 and is based on the confidence placed on the sensor data. Sensor reliability

information is available in most of the modern sensor devices. If the device sensors

are unreliable then α is set to a small value. Relying solely on either vision based

matching or on sensor data is not a good idea. Vision techniques fail when the images

are drastically different or have fewer features and sensors tend to be noisy and the

readings drift over time. We found that first doing the vision based matching and

then applying a α-weighted correction based on the sensor data gives us the best of
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both worlds.

3.3.5 Global Matching and Score Computation

We now have a match window that is based on reliable MSER interest point detection

followed by SIFT matching and RANSAC based outlier rejection and sensor based

correction. Although this match window is reliable, it is still based only on local

features without any global context of the scene. There are several scenarios in

the real world (like urban environments), where we have repetitive and commonly

occurring patterns and local features that may result in an inaccurate match window.

In this final step, we do a global comparison and compute the egocentric localization

score.

Global comparison is done by comparing the match window, Wref located around

fs in Iref , with Ipov (i.e., the red match windows of the bottom image in Figure

8). This comparison is done using global GIST descriptors [90]. A GIST descriptor

gives a global description of the image based on the image’s spectral signatures and

tells us how visually similar the two images are. GIST descriptors qpov and qref are

computed for Ipov and Wref respectively and final egocentric FOV localization score

is computed as the L2-distance between the GIST descriptors: ‖ qpov − qref ‖=√
(qpov − qref ).(qpov − qref ). Scoring quantifies the confidence in our matches and

by thresholding on the score, we can filter out incorrect matches.

3.4 Applications and Results

To evaluate our approach and showcase different applications, we built 4 diverse

datasets that include both images and videos in both indoor and outdoor environ-

ments. All the POV data was captured with a Google Glass.
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3.4.1 Outdoor Urban Environments

Egocentric FOV localization in outdoor environments has applications in areas such as

tourism, assistive technology and advertising. To evaluate our system, 250 POV im-

ages (of dimension 2528x1856) along with sensor data (roll, pitch and yaw of the head)

was captured at different outdoor locations in two major metropolitan cities. The

reference dataset consists of the 250 street view panoramas (of dimension 3584x1536)

from those locations. Based on the user’s GPS location, the appropriate street view

panorama was fetched and used for matching. Ground truth was provided by the

user who documented his point of attention in each of the 250 POV images. However

we have to take into account the fact that we are only tracking the head orienta-

tion using sensors and not tracking the eye movement. Humans may or may not

rotate their heads completely to look at something; instead they may rotate their

head partially and just move their eyes. We found that this behavior (of keeping the

head fixed while moving the eyes) causes a circle of uncertainty of radius R around

the true point-of-attention in the reference image. To calculate its average value, we

conducted a user-study with 5 participants. The participants were instructed to keep

their heads still and use only their eyes to see as far to the left and to the right as

they could without the urge to turn their heads. This mean radius of their natural

eye movement was measured to be 330 pixels for outdoor urban environments. Hence

for our evaluation we consider the egocentric FOV localization to be successful if the

estimated point-of-attention falls within a circle of radius R = 330 pixels around the

ground truth point-of-attention.

Experimental results show that without using sensor data, egocentric FOV lo-

calization was accurate in 191/250 images for a total accuracy of 76.4%. But when

sensor data was included, the accuracy rose to 92.4%. Figure 9 shows the egocentric

FOV localization results and the shifts in FOV over time. Discriminative objects such

as landmarks, street signs, graffiti, logos and shop names helped in the getting good
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Figure 9: Egocentric FOV localization in outdoor environments. The images on the
left are the POV images taken from Glass. The red dot shows the focus-of-attention.
The panorama on the right shows the localization (target symbols) and the shifts in
the FOV over time (red arrows). Note the change in season and pedestrian traffic
between the POV images and the reference image.

matches. Repetitive and commonly occurring patterns like windows and vegetation

caused initial failures but most of them were fixed when the sensor correction was

applied.

3.4.2 Presentations in Indoor Spaces

There are scenarios where a pre-built reference dataset (like street view) is not avail-

able for a given location. This is especially true for indoor environments that have not

been as thoroughly mapped as outdoor environments. In such scenarios, egocentric

FOV localization is possible with a reference dataset that is concurrently captured

along with the POV data. To demonstrate this, a 30 minute POV video along with

sensor data was captured during an indoor presentation. The person wearing Glass

was seated in the audience in the first row. The POV video is 720p at 30 fps. The

reference dataset consists of videos from two fixed cameras at the presentation venue.

One camera was capturing the presenter while the other camera was pointed at the

audience. The reference videos are 1080p at 30 fps. Ground truth annotations for

every second of the video were provided by the user who wore Glass and captured the
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Figure 10: Egocentric FOV localization in indoor environments. The images on the
first column show the room layout. The presenter is shown in Green and the person
wearing Glass is shown in Blue with his egocentric view shown by the blue arrow.
The second column shows the POV video frames from Glass. The red dot shows
the focus-of-attention. The third and fourth column show the presenter cam and
the audience cam respectively. The localization is shown by the target symbol and
the selected camera is shown by the red bounding box. The person wearing Glass is
highlighted by the blue circle in the presenter camera views.

POV video. So, we have 60*30 = 1800 ground truth annotations. As with the previ-

ous dataset, we empirically estimated R to be 240 pixels. Experimental results show

that egocentric FOV localization and camera selection was accurate in 1722/1800

cases for a total accuracy of 95.67%. Figure 10 shows the FOV localization and

camera selection results.

3.4.3 Egocentric Video Tours in Museums

Public spaces like museums are ideal environments for an egocentric FOV localization

system. Museums have exhibits that people explicitly pay attention to and want to

learn more about. Similar to audio-tours that are available in museums, we demon-

strate a system for attention-driven egocentric video tours. Unlike in an audio tour

where a person has to enter the exhibit number to hear details about it, our video

tour system recognizes the exhibit when the person looks at it and brings up a cue

card on the wearable device giving more information about the exhibit.

For our evaluation, we captured 250 POV images of paintings at 2 museums in
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Figure 11: Egocentric FOV localization in indoor art installations. The images on the
left are the POV images taken from Glass. The red dot shows the focus-of-attention.
The images to their right are panoramas from indoor streetview that correctly shows
the localization result (target symbol). When available, the details of the painting are
shown. This information is automatically fetched, using the egocentric FOV location
as the cue. For the painting on the right (Van Gogh’s “The Starry Night”), an
information card shows up and provides information about the painting.

Figure 12: The widths and heights of the 250 paintings, sorted in ascending order
based on their value. We can see that our dataset has a good representation of
paintings of varying widths and heights.

New York City - The Metropolitan Museum of Art and The Museum of Modern Art.

The reference dataset consists of indoor street view panoramas from these museums,

made available as part of the Google Art Project [2]. Since this dataset consists of

paintings, which have a fixed structure (a frame enclosing the artwork), we have a

clear definition of correctness: egocentric FOV localization is deemed to be correct if

the estimated focus-of-attention is within the frame of the painting in the reference

image. Experimental results show that the localization was accurate in 227/250

images for a total accuracy of 90.8%. Figure 12 shows the distribution of the widths

and heights of the paintings in out dataset. We can see that paintings of all widths

and heights are well represented.
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The Google Art panoramas are annotated with information about the individual

paintings. On successful FOV localization, we fetch the information on the painting

that the person is viewing and display it on Glass or as an overlay. Figure 11 shows

the FOV localization results and the painting information that was automatically

fetched and shown on Glass.

3.4.4 Joint Egocentric FOV Localization

When we have a group of people wearing POV devices within the same event space,

egocentric FOV localization becomes much more interesting. We can study joint FOV

localization (i.e. when two or more people are simultaneously attending to the same

object), understand the social dynamics within the group and gather information

about the event space itself.

Joint FOV localization can be performed by matching the videos taken from one

POV device with the videos taken from another POV device. If there are n people

in the group, P = {pi|i ∈ [1, n]}, then we have n POV videos: V = {vi|i ∈ [1, n]}. In

the first step, all the videos in V are synchronized by time-stamp. In the second step,

k videos (where k ≤ n) are chosen from V and matched against each other, which

results in a total of
(
n
k

)
matches. Matching is done frame-by-frame, by treating frame

from one video as Ipov and the frames from the other videos as Iref . By thresholding

the egocentric FOV localization scores, we can discover regions in time when the k

people were jointly paying attention to the same object. Finally, in the third step,

the videos can be matched against the reference imagery from the event space to find

out what they were jointly paying attention to.

We conducted our experiments with n = 4 participants. The 4 participants wore

Glass and visited the Computer History Museum in California. They were instructed

to behave naturally, as they would on a group outing. They walked around in the

museum looking at the exhibits and talking with each other. A total of 60 minutes
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of POV videos and the corresponding head-orientation information were captured

from their 4 Glass devices. The videos are 720p at 30fps. The reference dataset

consists of indoor street view panoramas from the museum. Next, joint egocentric

FOV localization was performed by matching pairs of videos against each other, i.e.

k = 2, for a total of 6 pairs of matches. Figure 14 shows the results for 25,000 frames

of video for all the 6 match pairs. The plot shows the instances in time when groups

of people were paying attention to the same exhibit. Furthermore, we get an insight

into the social dynamics of the group. For example, we can see that P2 and P3 were

moving together but towards the end P3 left P2 and started moving around with P1.

Also, there are instances in time when all the pairs of videos match which indicates

that the group came together as a whole. One such instance is highlighted in Figure

14 by the orange vertical line. There are also instances when the 4 people split into

two groups. This is shown by the green vertical line in Figure 14.

Joint egocentric FOV localization also helps us get a deeper understanding of

the event space. Interesting exhibits tend to bring people together for a discussion

and result in higher joint egocentric attention. It is possible to infer this from the

data by matching the videos with the reference images and labeling each exhibit

with the number of people who jointly viewed it. By overlaying the exhibits on the

floorplan, we can generate a heat map of the exhibits where hotter regions indicate

more interesting exhibits that received higher joint attention. This is shown in Figure

13. Getting such an insight has practical applications in indoor space planning and

the arrangement and display of exhibits in museums and other similar spaces.

3.4.5 Evaluation Strategy

In the previous chapter we used classic ML evaluation methodologies such as super-

vised and unsupervised learning on the activity recognition and anomaly detection

datasets. However, in this chapter, the evaluation strategy is different due to the
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Figure 13: A heatmap overlaid on a section of the Computer History Museum’s
floorplan. Hotter regions in the map represent exhibits which had joint egocentric
attention from more people. Three of the hottest regions are labeled to show the un-
derlying exhibits that brought people together and probably led to further discussions
among them.

nature of our applications and the datasets that we use. Here the ground-truth is the

users’ POV when the image or video was captured using the POV device. Given this

ground-truth information, we account for the mean radius of natural eye movements

and deem the localization to be accurate if the estimated point-of-attention falls

within this radius around the ground-truth point-of-attention. Furthermore, some

of our results are subjective in nature and can only be visualized pictorially. For

example, the attention heatmap of the museum generated using the joint-attention

information was shown as a visualization in Figure 13. Since this result is first of its

kind we do not have ground-truth data for this, and in-turn, this makes the result

entirely subjective by nature.

3.5 Discussion

One of the assumptions here is the availability of reference images in indoor and

outdoor spaces. This may not be true for all situations. Also, it may not be possible

to capture reference data concurrently (as in the indoor presentation dataset) due to

restrictions by the event managers and/or privacy concerns. However, our assumption
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does holds true for a large number of indoor and outdoor spaces which makes the

proposed approach practical and useful.

There are situations where the proposed approach may fail. While our matching

pipeline is robust to a wide variation of changes in the images, it may still fail if

the reference image is drastically different from the POV image (for example, a POV

picture taken in summer matched against a reference image taken on a white snowy

winter). Another reason for failure could be when the reference dataset is outdated.

In such scenarios, the POV imagery will not match well with the reference imagery.

However these drawbacks are only temporary. With the proliferation of cameras

and the push to map and record indoor and outdoor spaces, reference data for our

approach will only become more stable and reliable.

Our reference images are 2D models of the scene (for example, Street View panora-

mas). Moving to 3D reference models could provide a more comprehensive view of

the event space and result in better FOV localization. But this would require a com-

putationally intensive matching pipeline which involves 2D to 3D alignment and pose

estimation.

3.6 Conclusion

In this chapter, we demonstrated a working system that can effectively leverage ego-

centric context and localize egocentric FOVs, determine the person’s point-of-interest,

map the shifts in FOV and determine joint attention in both indoor and outdoor

environments from one or more POV devices. Several practical applications were

presented on “in-the-wild” real-world datasets.
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Figure 14: The plot on the top shows the joint egocentric attention between groups
of people. The x-axis shows the progression of time, from frame 1 to frame 25,000.
Each row shows the result of joint egocentric FOV localization, i.e. the instances in
time when pairs of people were jointly paying attention to the same exhibit in the
museum. The orange vertical line indicates an instance in time when all the people
(P1, P2, P3 and P4) were paying attention to the same exhibit. The green vertical
line indicates an instance in time when P1 and P4 were jointly paying attention
to an exhibit while P2 and P3 were jointly paying attention to a different exhibit.
The corresponding frames from their Glass videos is shown. When matched to the
reference street view images, we can discover the exhibits that the groups of people
were viewing together and were probably having a discussion about. Details of the
exhibit was automatically fetched from the reference dataset’s annotation.
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CHAPTER IV

LEVERAGING GEOGRAPHIC CONTEXT

In this chapter, we look at how geographic context can be leveraged to make challeng-

ing “in-the-wild” object recognition tasks more tractable using the problem of food

recognition in restaurants as a case-study [11]. The pervasiveness of mobile cameras

has resulted in a dramatic increase in food photos, which are pictures reflecting what

people eat. In this chapter, we study how taking pictures of what we eat in restaurants

can be used for the purpose of automating food journaling. We propose to leverage

the context of where the picture was taken, with additional information about the

restaurant, available online, coupled with state-of-the-art computer vision techniques

to recognize the food being consumed. To this end, we demonstrate image-based

recognition of foods eaten in restaurants by training a classifier with images from

restaurant’s online menu databases. We evaluate the performance of our system in

unconstrained, real-world settings with food images taken in 10 restaurants across 5

different types of food (American, Indian, Italian, Mexican and Thai).

4.1 Introduction

Recent studies show strong evidence that adherence to dietary self-monitoring helps

people lose weight and meet dietary goals [16]. This is critically important since

obesity is now a major public health concern associated with rising rates of chronic

disease and early death [57].

Although numerous methods have been suggested for addressing the problem of

poor adherence to nutrition journaling [4, 97, 133], a truly practical system for ob-

jective dietary monitoring has not yet been realized; the most common technique

for logging eating habits today remains self-reports through paper diaries and more
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recently, smartphone applications. This process is tedious, time-consuming, prone to

errors and leads to selective under reporting [34].

While needs for automated food journaling persist, we are seeing an ever increasing

growth in people photographing what they eat. In this chapter we present a system

and approach for automatically recognizing foods eaten at restaurants from first-

person food photos with the goal of facilitating food journaling. The methodology

we employ is unique because it leverages sensor data (i.e., location) captured at the

time photos are taken. Additionally, online resources such as restaurant menus and

online images are used to help recognize foods once a location has been identified.

Our motivation for focusing on restaurant eating activities stems from findings

from recent surveys indicating a trend towards eating out versus eating at home. In

1970, 25.9 percent of all food spending was on food away from home; by 2012, that

share rose to its highest level of 43.1 percent [119]. Additionally, 8 in 10 Americans

report eating at fast-food restaurants at least monthly, with almost half saying they

eat fast food at least weekly [33].

Research in the computer vision community has explored the recognition of either

a small sub-set of food types in controlled laboratory environments [19, 132] or food

images obtained from the web [47]. However, there have been only a few validated

implementations that address the challenge of food recognition from images taken “in

the wild” [56]. Systems that rely on crowdsourcing, such PlateMate [88], have shown

promise but are limited in terms of cost and scalability. Additionally, privacy concerns

might arise when food photographs are reviewed by untrusted human computation

workers [110].

In this chapter, we seek an approach that supports automatic recognition of food,

leveraging the context of where the photograph was taken. Our contributions are:

• An automatic workflow where online resources are queried with contextual sen-

sor data to find food images and additional information about the restaurant
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where the food picture was taken, with the intent to build classifiers for food

recognition.

• An image classification approach using the SMO-MKL multi-class SVM classi-

fication framework with features extracted from test photographs.

• An in-the-wild evaluation of our approach with food images taken in 10 restau-

rants across 5 different types of cuisines (American, Indian, Italian, Mexican

and Thai).

• A comparative evaluation focused on the effect of location data in food recog-

nition results.

In this chapter, we concentrate on food recognition, leveraging the additional

context that is available (location, websites, etc.). Our goal here is to in essence,

using food and restaurants as the domain, demonstrate the value of external context,

coupled with image recognition to support classification. We believe that the same

method can be used for many other domains.

4.2 Related Work

Various sensor-based methods for automated dietary monitoring have been proposed

over the years. Amft and Troster [4] explored sensors in the wrists, head and neck to

automatically detect food intake gestures, chewing, and swallowing from accelerome-

ter and acoustic sensor data. Sazonov et al. built a system for monitoring swallowing

and chewing using a piezoelectric strain gauge positioned below the ear and a small

microphone located over the laryngopharynx [97]. Yatani and Truong presented a

wearable acoustic sensor attached to the user’s neck [133] while Cheng et al. explored

the use of a neckband for nutrition monitoring [22].

With the emergence of low-cost, high-resolution wearable cameras, recording in-

dividuals as they perform everyday activities such as eating has been gaining appeal
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[5]. In this approach, individuals wear cameras that take first-person point-of-view

photographs periodically throughout the day. Although first-person point-of-view im-

ages offer a viable alternative to direct observation, one of the fundamental problems

is image analysis. All captured images must be manually coded for salient content

(e.g., evidence of eating activity), a process tends to be tedious and time-consuming.

Over the past decade, research in computer vision is moving towards “in the wild”

approaches. Recent research has focussed on recognizing realistic actions in videos

[73], unconstrained face verification and labeling [58] and objection detection and

recognition in natural images [25]. Food recognition in the wild using vision-based

methods is growing as a topic of interest, with Kitamura et al. [56] showing promise.

Finally, human computation lies in-between completely manual and fully-automated

vision-based image analysis. PlateMate [88] crowdsources nutritional analysis from

food photographs using Amazon Mechanical Turk, and Thomaz et al. investigated the

use of crowdsourcing to detect [111] eating moments from first-person point-of-view

images. Despite the promise of these crowdsourcing-based approaches, there are clear

benefits to a fully automated method in economic terms, and possibly with regards

to privacy as well.

4.3 Methodology

Recognizing foods from photographs is a challenging undertaking. The complexity

arises from the large number of food categories, variations in their appearance and

shape, the different ways in which they are served and the environmental conditions

they are presented in. To offset the difficulty of this task, the methodology we propose

(Figure 15) centers on the use of location information about the eating activity, and

also restaurant menu databases that can be queried online. As noted, our technique

is specifically aimed at eating activities in restaurants as we leverage the context of

restaurant related information for classification.
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IMAGE COLLECTION

Collect images throughout 
the day using a POV camera

INFER LOCATION

Get geo-location of each 
image from geo-tags.

GENERATE TRAINING SET

Identify images corresponding 
to a restaurant based on lookup
from online database like Yelp.

Lookup restaurant name and 
fetch, parse online menu.

For each menu item get training 
images from Google Image Search.

GENERATE TESTING SET

Perform hierarchical segmentation.

Extract image segments containing 
foods using location heuristics.

MACHINE LEARNING

Feature extraction and kernel 
computation using color and 
point based algorithms. 

Classify using SMO-MKL 
Support Vector Machine (SVM)

PREDICTION

Figure 15: An overview of our automatic food recognition approach.

4.3.1 Image Acquisition

The first step in our approach involves the acquisition of food images. The popularity

of cameras in smartphones and wearable devices like Google Glass makes it easy to

capture food images in restaurants. In fact, many food photographs communities

such as FoodGawker have emerged over the last several years, all centered on food

photo sharing. Photographing food is also hitting major photo sharing sites like

Instagram, Pinterest and Flickr, and food review sites like Yelp. These food-oriented

photo activities illustrate the practicality of using manually-shot food photos for food

recognition.

4.3.2 Geo-Localizing Images

The second step involves associating food photos with longitude and latitude coordi-

nates. If the camera that is being used supports image geo-tagging, then the process

of localizing images is greatly simplified. Commodity smart-phones and cameras like

the Contour and SenseCam come with built-in GPS capabilities. If the geo-tag is not

available, image localization techniques can be used [134]. Once location is obtained

for all captured images, the APIs of Yelp and Google Places are valuable for matching

the images’ geo-tags coincide with the geo-tag of a restaurant.
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Figure 16: Weakly-labeled training images obtained from Google Image search for 3
classes of food: Left: Basil Fried Rice; Center: Curry Katsu; Right: Lo Mein.

4.3.3 Weakly Supervised Learning

Being able to localize images to a restaurant greatly constrains the problem of food

classification in the wild. A strong assumption can be made that the food present

in the images must be from one of the items on the restaurant’s menu. This key

observation makes it possible to build a weakly supervised classification framework

for food classification. The subsequent sections describe in detail the gathering of

weakly-labeled training data, preparing the test data and classification using the

SMO-MKL multi-class SVM classification framework [121].

4.3.3.1 Gathering Training Data

We start with collecting images localized to a particular restaurant R. Once we

know R, we can use the web as a knowledge-base and search for R’s menu. This

task is greatly simplified thanks to online data-sources like Yelp, Google Places, All-

menus.com and Openmenu.com, which provides comprehensive databases of restau-

rant menus.

Let the menu for R be denoted by MR and let the items on the menu be mi.

For each mi ∈ MR, the top 50 images of mi are downloaded using search engines

like Google Image search. This comprises the weakly-labeled training data. Three

examples are shown in Figure 16. From the images, it is possible to see that there is

a high degree of intra-class variability in terms of color and presentation of food. As
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Figure 17: Extracting segments using hierarchical segmentation. The final segmented
image is shown on the right.

is the case with any state-of-the-art object recognition system, our approach relies on

the fact that given sufficient number of images for each class, it should be possible to

learn common patterns and statistical similarities from the images.

4.3.3.2 Preparing Testing Data

The test images, localized to restaurant R, are segmented using hierarchical segmen-

tation and the segments are extracted from parts of the image where we expect the

food to be present [6]. The final set of segmented images forms our test data. An

example is shown in Figure 17.

4.3.3.3 Feature Descriptors

Choosing the right combination of feature detectors, descriptors and classification

backend is key to achieving good accuracy in any object recognition or image catego-

rization task. While salient point detectors and corresponding region descriptors can

robustly detect regions which are invariant to translation, rotation and scale [74, 80],

illumination changes can still cause performance to drop. This is a cause of concern

when dealing with food images, since images taken at restaurants are typically indoors

and under varying lighting conditions. Recent work by van de Sande et al. [120] sys-

tematically studies the invariance properties and distinctiveness of color descriptors.
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The results of this study guided the choice of the descriptors in our approach. For

the classification back-end, we use Multiple Kernel Learning (MKL), which in recent

years, has given robust performance on object categorization tasks [7, 105, 121].

For feature extraction from the training and test data, a Harris-Laplace point

detector is used since it has shown good performance for category recognition tasks

[135] and is scale-invariant. However the choice of feature descriptor is more compli-

cated. As seen in Figure 16, there is a high degree of intra-class variability in terms

of color and lighting. Based on the recent work by van de Sande et al. [120] that

studies the invariance properties and distinctiveness of various color descriptors on

light intensity and color changes, we pick the following six descriptors, 2 color-based

and 4 SIFT-based (Scale-Invariant Feature Transform [74]):

• Color Moment Invariants: Generalized color moments Mabc
pq (of order p+ q and

degree a + b + c) have been defined as Mabc
pq =

∫ ∫
xpyq[IR(x, y)]a[IG(x, y)]b

[IB(x, y)]cdxdy. Color moment invariants are those combinations of generalized

color moments that allow for normalization against photometric changes and

are invariant to changes and shifts in light intensity and color.

• Hue Histograms: Based on the observation that the certainty of hue is inversely

proportional to the saturation, each hue sample in the hue histogram is weighted

by its saturation. This helps overcome the (known) instability of hue near the

gray axis in HSV space. The descriptors obtained are invariant to changes and

shifts in light intensity.

• C-SIFT: The descriptors are built using the C-invariant (normalized opponent

color space). C-SIFT is invariant to changes in light intensity.

• OpponentSIFT: All the channels in the opponent color space are described using

SIFT descriptors. They are invariant to changes and shifts in light intensity.
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• RGB-SIFT: SIFT descriptors are computed for every RGB channel indepen-

dently. The resulting descriptors are invariant to changes and shifts in light

intensity and color.

• SIFT: The original SIFT descriptor proposed by Lowe [74]. It is invariant to

changes and shifts in light intensity.

4.3.3.4 Classification Using SMO-MKL

For a given restaurant R, 100,000 interest points are detected in the training data

and for each of the 6 descriptors, visual codebooks are built using k-means clustering

with k = 1000. Using these codebooks, bag-of-words (BoW) histograms are built for

the training images. Similarly, interest points are detected in the test images and

BoW are built for the 6 descriptors (using the visual codebooks generated with the

training data).

For each of the 6 sets of BoW features, extended Gaussians kernels of the following

form are computed:

K(Hi, Hj) = exp(− 1

A
D(Hi, Hj)) (2)

where Hi = {hin} and Hj = {hjn} are the BoW histograms (scaled between 0

to 1 such that they lie within a unit hypersphere) and D(Hi, Hj) is the χ2 distance

defined as

D(Hi, Hj) =
1

2

V∑
n=1

(hin − hjn)2

hin + hjn
(3)

where V is the vocabulary size (1000, in our case). The parameter A is the

mean value of the distances between all the training examples [135]. Given the set of

these N base kernels {Kk} (in our case N = 6), linear MKL aims to learn a linear

combination of the base kernels: K =
∑N

k=1 αiKi
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But the standard MKL formulation subject to l1 regularization leads to a dual that

is not differentiable. Hence the Sequential Minimal Optimization (SMO) algorithm

cannot be applied and more expensive alternatives have to be pursued. Recently,

Vishwanathan et al. showed that it is possible to use the SMO algorithm if the focus

is on training p-norm MKL, with p > 1 [121]. They also show that the SMO-MKL

algorithm is robust and significantly faster than the state-of-the-art p-norm MKL

solvers. In our experiments, we train and test using the SMO-MKL SVM.

4.4 Study & Evaluation

We perform two sets of experiments to evaluate our approach. In the first set of

experiments, we compare the feature extraction and classification techniques used

in this chapter, with the state-of-the-art food recognition algorithms on the PFID

benchmark data-set [19]. This validates our proposed approach. In the second set of

experiments, we measure the performance of the proposed approach for “in-the-wild”

food recognition.

4.4.1 Comparative Evaluations

We study the performance of the 6 feature descriptors and SMO-MKL classification

on the PFID food data-set. The PFID dataset is a collection of 61 categories of

fast food images acquired under lab conditions. Each category contains 3 different

instances of food with 6 images from 6 view-points in each instance. In order to

compare our results with the previous published results on PFID [19, 132], we follow

the same protocol used by them, i.e. a 3-fold cross-validation is performed with 12

images from one instance being used for training while the other 6 images from the

remaining instance are used for testing.

The results of our experiments are shown in Figure 18. MKL gives the best perfor-

mance and improves the state-of- the-art [132] by more than 20%. It is interesting to

note that the SIFT descriptor used in our approach achieves 34.9% accuracy whereas
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Figure 18: Performance of the 6 feature descriptors and SMO-MKL on the PFID
data-set. The first two results (shown in green) are the baseline for PFID published by
[19]. The next two (shown in red) are the results obtained by using Global Ingredient
Representation (GIR) and Orientation and Midpoint Category (OM) [132]. The
rest of the results (in blue) are one ones obtained using the 6 feature descriptors
and MKL (CMI: Color Moment Invariant, C-S: C-SIFT, HH: Hue-Histogram, O-S:
OpponentSIFT, R-S: RGB- SIFT, S: SIFT and MKL: Multiple Kernel Learning).
MKL gives the best performance on this data-set.

the SIFT descriptor used in the PFID baseline [19] achieves 9.2% accuracy. The

reason for this difference is that the authors of the PFID baseline use LIB-SVM for

classification with its default parameters. However, by switching to the χ2 kernel

(and ensuring that the data is scaled) and by tuning the SVM parameters (through a

grid-search over the space of C and γ), we can get a significant boost in performance

with just SIFT features alone.

4.4.2 Food Recognition in Restaurants

To study the performance and the practicality of our approach, experiments were

conducted on images collected from restaurants across 5 different cuisines: American,

Indian, Italian, Mexican and Thai. To discount for user and location bias, 3 different

individuals collected images on different days from 10 different restaurants (2 per

cuisines). The data collection was done in two phases. In the first phase, the food

images were captured using smartphone cameras. In total, 300 “in-the-wild” food

images (5 cuisines × 6 dishes/cuisine × 10 images/dish) were obtained. In the second
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Figure 19: Sample (12 out of 600) of the “in-the-wild” images used in testing.

Table 4: Classification results showing the performance of the various feature de-
scriptors on the 5 cuisines. The columns are: CMI: Color Moment Invariant, C-S:
C-SIFT, HH: Hue-Histogram, O-S: OpponentSIFT, R-S: RGB-SIFT, S: SIFT and
MKL: Multiple Kernel Learning.

CMI C-S HH O-S R-S S MKL

American 45.8% 51.7% 43.3% 43.3% 37.5% 29.2% 67.5%

Indian 44.2% 74.2% 55.0% 59.2% 69.2% 65.0% 80.8%

Italian 33.3% 52.5% 67.5% 74.2% 66.7% 49.2% 67.5%

Mexican 36.7% 35.8% 20.8% 37.5% 24.2% 33.3% 43.3%

Thai 27.5% 36.7% 25.0% 33.3% 50.8% 30.8% 50.8%

phase, data collection was repeated using a Google Glass and an additional 300 images

were captured. These 600 “in-the-wild” images, form our test data-set. A sample of

these test images is shown in Figure 19.

Using the geo-location information, the menu for each restaurant was automati-

cally retrieved. For our experiments, we restricted the training to 15 dishes from each

cuisine (selected based on online popularity). For each of the 15 dishes on the menu,

50 training images were downloaded using Google Image search. Thus, a total of 3,750

weakly-labeled training images were downloaded (5 cuisines × 15 menu-items/cuisine

× 50 training-images/menu-item).
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Figure 20: Confusion matrices for the best performing features of Table 4 (for each
of the 5 cuisines). Darker colors show better recognition. The 6 food classes in the
rows are the ones used for testing and the 15 food classes in the columns are the ones
used for training. The overall average accuracy is 63.33%
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Next, we perform interest point detection, feature extraction, codebook building

for BoW representation, kernel pre-computation and finally classification using SMO-

MKL. The results are summarized in Table 4 and the individual confusion matrices are

shown in Figure 20. We achieve good classification accuracy with American, Indian

and Italian cuisines. However, for the Mexican and Thai cuisines, the accuracy is

limited. It could be due to the fact that there is a low degree of visible variability

between food types belonging to the same cuisines. For example, in the confusion

matrix for Thai, we can see that Basil Fried Rice is confused with Mandarin Fried

Rice and Pad Thai Noodles is confused with Lo Mein. It could be very hard, even

for humans, to distinguish between such classes by looking at their images.

From Table 4, we can see that there is no single descriptor that works well across

all the 5 cuisines. This could be due to the high-degree of variation in the training

data. However, combining the descriptors using MKL yields the best performance in

4 out of the 5 cases.

4.4.3 Recognition Without Location Prior

Our approach is based on the hypothesis that knowing the location (through geo-tags)

helps us in narrowing down the number of food categories which in turn boosts recog-

nition rates. In order to test this hypothesis, we disregard the location information

and train our SMO-MKL classifier on all of the training data (3,750 images). With

this setup, accuracy across our 600 test images is 15.67%. On the other hand, the

overall average accuracy across the 5 cuisines (from Figure 20) is 63.33%. We can see

that the average performance increased by 47.66% when location prior was included.

This provides validation that knowing the location of eating activities helps in food

recognition, and that it is better to build several smaller restaurant/cuisine specific

classifiers rather than one all-category food classifier.
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4.4.4 Evaluation Strategy

The evaluation strategies in this thesis are driven by the nature of our application.

In the first chapter, we employed a traditional ML approach of supervised and unsu-

pervised learning for activity recognition, skill classification, anomaly detection and

functional categorization. In the second chapter, our evaluations included visualiza-

tions and a non-traditional approach of figuring out a person’s mean eye-movement

radius around the ground-truth point-of attention and using that information to de-

termine the accuracy of our estimated point-of-attention. In this chapter, we evaluate

our results within a multi-class semi-supervised classification framework. Unlike the

applications in the first chapter, where the training data and the testing data came

from the same dataset (test/train split), in this chapter the training data is obtained

in a semi-supervised manner from Google Images and the testing data is obtained

from the pictures of the food that we are eating. Given that our training data has

weak labels, we employ a SMO-MKL SVM learning based approach and report the

percentage accuracy of each of our food categories.

4.5 Discussion

In this section we discuss several important points pertaining to the generalizability

of our approach, implementation issues, and practical considerations.

4.5.0.1 Generalizability

The automatic food identification approach that we propose is focused on eating

activities in restaurants. Although this might seem limiting, eating out has been

growing in popularity and 43.1% of food spending was reported to having been spent

in foods away from home in 2012 [33, 119]. Moreover, we feel that eating and food

information gathered in restaurants is more valuable for dietary self-monitoring than

food information obtained at home, since individuals are more likely to know food
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types and the composition of food items prepared in their own homes.

We designed our study and evaluation with the goal of maximizing the external

validity of our results. We evaluated our approach by having three individuals collect

images from the most popular restaurant types by cuisine in the US on different days

and using two different devices (smartphones and Google Glass). We feel confident

that our methodology will scale in the future, especially since it leverages sensor data,

online resources and practices around food imagery that will become increasingly more

prevalent in years to come.

One important aspect of the approach is that it depends on weakly-labeled training

images obtained from the web. The high-degree of intra-class variability for the same

food across different restaurants has a negative effect on performance. A promising

alternative is to train on (automatically acquired) food images taken at the same

restaurant as the one where the test images were taken. While getting this kind of

data seems difficult, it may soon be possible. A recently launched service by Yelp

(among others), allows users to upload photos of their food. With such crowd-sourced

imagery available for a given restaurant, it may soon be possible to train specialized

classifiers for that restaurant. In our future work, we plan to test this hypothesis and

improve the recognition accuracies.

4.5.0.2 Location Error

We not only identify the cuisine that the individual is eating, but also identify the spe-

cific dish that is being consumed. Our approach hinges on identifying the restaurant

the individual is at, and retrieving the menu of said restaurant. Although latitude

and longitude can be reliably obtained with GPS sensors in mobile and wearable de-

vices today, there might be times when the association between location data and the

exact restaurant the person is visiting is erroneous (e.g. person is inside a shopping

mall, or when two or three restaurants are in close proximity to each other). Although
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this might seem like a limitation of our method, it is usually not of practical concern

since restaurants that are physically close are typically significantly different in their

offerings. Thus, it is often enough to identify the general physical area the individual

is at (as opposed to the exact restaurant) and retrieve the menu of all restaurants

and their respective food photos.

4.5.0.3 Semi-Automating Food Journaling

Dietary self-monitoring is effective when individuals are actively engaged and become

aware of their eating behaviors. This, in turn, can lead to reflection and modifications

in food habits. Our approach to food recognition is designed to facilitate dietary self-

monitoring. Engagement is achieved by having individuals take a picture of their food;

the tedious and time-consuming task of obtaining details about the food consumed

is automated.

4.6 Conclusion

Although numerous solutions have been suggested for addressing the problem of poor

adherence to nutrition journaling, a truly practical system for dietary self-monitoring

remains an open research question. In this chapter, we present a method for auto-

matically recognizing foods eaten in restaurants leveraging location sensor data and

online databases.

The contributions of this work are (1) an automatic workflow where online re-

sources are queried with contextual sensor data (e.g., location) to assist in the recogni-

tion of food in photographs.; (2) image classification using the SMO-MKL multi-class

SVM classification framework with features extracted using color and point-based

algorithms; (3) an in-the-wild evaluation of our approach with food images taken in

10 restaurants across 5 different types of food (American, Indian, Italian, Mexican

and Thai); and (4) a comparative evaluation focused on the effect of location data in

food recognition results.
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CHAPTER V

LEVERAGING ENVIRONMENTAL CONTEXT

The previous chapters of this thesis explored the first two types of contexts: the

cues derived from the data (spatio-temporal context) and the cues that are captured

concurrently using external sensor devices (specifically, egocentric and geographic

context) in order to effectively support dynamic scene understanding. In this chapter,

we discuss our work on leveraging the third type of context – environmental context,

for automated production of basketball highlights.

5.1 Introduction

The environment within which an activity is taking place may have third-party ob-

servers who are observing and reacting to the actors involved in the activity. The

environment may also contain sensors that are capturing information about the on-

going activity and also recording the reactions of the third-party observers. In this

chapter we show that several contextual cues can be derived from such observations

within the environment and successfully leveraged to understand the dynamic scene

that is taking place within the environment.

Sporting events are ideal for this study. The players are active within the environ-

ment and the audience reacts to their actions with a range of emotions ranging from

excitement to frustration. Sensors such as cameras and microphones are setup by the

broadcasters which capture the player activity and the audience reaction (both audio

and video). There are also several “expert” third party observers within the environ-

ment such as referees, coaches, commentators, and on-court statisticians. The data

from these observers coupled with the video data from the broadcast videos provides

rich contextual cues that can be leveraged to understand the sporting scene.
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An effective demonstration of understanding a dynamic scene such as sports is to

automatically produce the highlights for the game. Generating the highlights for an

entire sports game involves understanding the salient moments of the game, generat-

ing an excitement-based rank-ordering of the plays, segmenting and extracting them

from the broadcast video, and selecting the top clips to generate the game highlights.

Thus, in the context of this thesis, we define a sports highlight as a “highlight reel”

that showcases the top n exciting moments of the game in a chronological order.

The scope of this study is limited to basketball games. Basketball is the third most

popular sport in the US (after Football and Baseball) [1] and is held in indoor sta-

diums and indoor gymnasiums in schools and colleges that provides a representative

test-bed to develop our methodology and evaluate it.

In this study, contextual cues are derived from two sources within the basketball

environment: (1) microphones that capture the audience and commentator audio,

and (2) the play-by-play stats data from the on-court statisticians. From these two

environmental sources, we extract four different cues: “Audio”, ”Score Differential”,

“Player Ranking” and “Basket Type”. Finally, a fifth cue “Motion” is extracted from

the broadcast video which captures the magnitude of player and camera motion. For

each basket within a given game, the data from these five cues is combined to generate

an excitement score for the basket. Once all the baskets have been scored, we can

then rank them by their excitement scores and pick the top n exciting clips and use

them to generate the game highlights.

In order to conduct this study, we built a database of 25 NCAA games (played

between February and March of 2015) totaling 35.44 hours of basketball footage

along with the corresponding play-by-play stats data. There are a total of 1,173

baskets across these 25 games. We conducted extensive user-studies using Amazon’s

Mechanical Turk in order to obtain ground-truth on the excitement levels for each of

these 1,173 baskets. The ground-truth data was then used to study the effectiveness
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of each of the cues as an indicator of how exciting a basket is. Finally, the five cues

are combined by using a weighted sum wherein the weights are learned from the

data using 25-fold cross-validation (where we train using 24 games and test on the

held-out game and repeat). We conduct a second round of user-studies and show

(1) the effectiveness of cue-combination over each of the individual cues, and (2)

that the highlights that we generate with our cue-combination are comparable to the

highlights produced by ESPN for those games.

Contributions: Our contributions are as follows: (1) We present a method to

leverage environmental contextual cues to understand the excitement levels within a

basketball game and automatically produce basketball highlights, (2) We introduce a

new dataset of 25 NCAA games (35.44 hours of video with 1,173 baskets) along with

the play-by-play stats and the ground-truth excitement data for each basket (we will

make this dataset public to the research community), (3) We explore five different

cues and study their effectiveness in determining the excitement of baskets through

an extensive user study, and (4) We conduct user studies and show that the final

highlights that we produce are comparable to the ones produced by ESPN.

5.2 Related Work

Sports analytics and summarization has been an active area of research for the past

two decades. Most of the work has been on analyzing broadcast videos from sports

such as soccer, basketball, hockey, football and tennis. Professional broadcast videos

(such as videos from ESPN) contain replays which can be extracted by detecting the

logo-sweeps (shown before and after the replays) and the “arousal” level of the replays

can be computed using the audience’s audio energy and the amount of camera motion

in order to rank the replays in terms of their excitement level [136]. Slow-motion re-

plays can also be detected using Hidden Markov Models (HMMs) and Support Vector
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Regressors [113] and summaries can be generated by concatenating the detected re-

plays. When replays are not available in the broadcast video, baskets can be detected

by detecting breaks in the game and using object detectors to detect the referee and

the penalty boxes to make informed choices about the importance of different plays

during the games [24]. However, these approaches are limiting since detecting replays

and slow motions and using those clips in the highlights will give us a highlight reel

that has only those baskets for which replays or slow motions were shown. There

could be many other exciting baskets that are missed because the broadcast director

chose not to show the replays or slow motions for those baskets.

Audio plays a crucial role in detecting highlights in sports. The energy of the

crowd and the excitement in the commentator’s voice provides useful cues that can

be used to pick exciting moments in the game. Audio-based architectures for sports

summarization have been developed that extract audio features and classify the audio

segments as applause, cheering, music, speech, etc. and also perform background

noise modeling to further refine the results [130]. Along with audio, the amount of

motion within the broadcast footage also helps identify exciting moments. The motion

content of videos is encoded into the MPEG-7 motion activity descriptors. These

motion vectors can be quantized and combined with the audio features to generate

cumulative rankings of exciting moments [129, 71]. Audio and motion curves can

also be combined to generate excitement time curves wherein the maximas represent

the game highlights [38, 39] and the minimas around the maximas can be used to

determine the segment boundaries of the highlight clips [79]. Motivated by these

approaches, we investigate the use of audio and motion in our system.

An interesting area of research in sports summarization involves studying the

problem from a affective rather than a cognitive point-of-view. The cognitive point-

of-view is fact-based, wherein the features used for highlight detection are facts such

as audio energy, amount of motion, position of ball, etc. In contrast, the affective
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point-of-view is emotion-based and tries to understand the human emotions within

the game. Affect has three underlying dimensions: valence (ranging from pleasant

to unpleasant), arousal (ranging from excited to peaceful) and control (no-control to

full-control). All of human emotions can be mapped in as a set of points in this 3D

VAC space. Computational methods have been developed to compute the valence

and arousal using video and audio features and using them to find highlights in both

sports and movies, thereby generating summaries from an affective point-of-view [40].

In the past few years, with the proliferation of social media and blogging web-

sites, researchers have turned their attention to “crowd-sourced” sports summariza-

tion techniques. People watching broadcast games use Twitter to tweet their reac-

tions. Mining the Twitter data for relevant tweets and looking for times when there is

a spike in the volume of tweets gives us the moments in time that the crowd deems to

be interesting [85, 41]. Crowd-sourced summaries have several differences over tradi-

tional summaries generated by sports professionals. In crowd-sourced summaries the

highlights that get selected include interesting plays that require high degree of skill

(expected and easy plays are ignored), controversial plays and unusual occurrences

(like fights and stunts) and “lowlights” which are moments in time when the fans are

frustrated and angry at their favorite teams [108]. Other methods include analyzing

web-casting text and social media blogs, aligning them with the broadcast videos and

looking for highlights using player popularity and crowd sentiments [112, 131].

While most of the published works use cues derived only from the video data, the

only other environmental contextual cue that is used is the commentator and audience

audio. In our work, we look at the play-by-play stats that is obtained from the on-

court statisticians, a source of data that has largely been ignored by the research

community. We show that the play-by-play stats contain a wealth of information

that can be leveraged to generate highlights that are comparable to the highlights by

ESPN.
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Figure 21: An overview of our system that uses visual and environmental contextual
cues for automatically producing basketball highlights.

5.3 Methodology

An overview of our system is given in figure 21. The five different cues (four environ-

mental and one visual) form the core component of our system. Let us look at each

of these five cues in detail:

5.3.1 Cue 1: Audio

Gymnasiums and stadiums are equipped with microphones that capture the com-

mentator and audience audio. Exciting baskets typically draw loud cheers from the

audience and result in an elevation in the loudness and pitch in the commentator’s

voice. The changes in their audio levels are important contextual cues that are in-

dicative of how exciting a basket is [38, 39, 79, 130].

In our study, the audience and commentator audio is obtained from the broadcast

video and thus unavailable on two separate channels. Let us denote this signal as a.

Before we can compute statistics on a, it has to be pre-processed in order to obtain the
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Figure 22: Audio loudness plots for two sample baskets. The red dot represents the
time when the basket was scored and the green line (at the 10 second mark) represents
the time when the scoreboard was updated to reflect the new scores. We can see that
(1) the audio excitement peaks when the basket occurs, and (2) there is a slight delay
of a few milliseconds between when the basket occurs and the scoreboard updates
(the time difference between the red dot and the green line). The audio excitement
drops soon after as the game continues.

true audio loudness, al, based on human perception of loudness. We perform this pre-

processing by following the audio filtering guidelines provided by the International

Telecommunications Union (ITU) [53]. The first stage of pre-processing applies a

pre-filtering of the audio signal prior to the Leq(RLB) measure. The pre-filtering

accounts for the acoustic effects of the head, where the head is modeled as a rigid

sphere. The second stage of the algorithm applies the RLB weighting curve, which

consists of a single high-pass filter. With the pre-filter and the RLB filtering applied,

the mean square energy in the measurement interval T is then measure. Once the

weighted mean square level has been computed for each channel, the final step is to

sum the N audio channels. The audio loudness levels obtained using this approach

is shown for two sample baskets in figure 22.

The true audio level, al, obtained using the ITU’s guidelines has been shown to be

effective for use on audio programs that are typical of broadcast content which makes

it the ideal audio pre-processing step for our application. Once the audio signal has
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been pre-processed, the measure of excitement for a given basket b is computing as

Ab =
m∑
i=1

pi(al) (4)

where pi(al) is the ith highest loudness peak in a 4 second window around the

basket (3 seconds before the basket and 1 second after the basket). The overall

audio loudness level for each basket, Ab, is obtained by summing the top m peaks.

Empirically, for our NCAA dataset, m was determined to be 7. Finally, for each

game, the Ab values for all the baskets are normalized between 0 and 1 by computing

the min and max values across all baskets for that game.

5.3.2 OCR: Aligning the Stats With the Broadcast Videos

A main source of environmental context in our study is the play-by-play stats data

that is generated by the on-court statisticians. The play-by-play data can be available

in near-real-time or it can be available post-game. In either case, the stats need to

be aligned with the broadcast video in order to determine when the particular play

mentioned in the play-by-play stats actually occurred in the video. Unfortunately, the

play-by-play stats are specific to a game and not specific to any particular broadcast

video of the game. Hence they do not contain the video time-stamp of when the play

occurred in the broadcast video.

In order to align the stats with the video, we introduce a novel Optical Character

Recognition (OCR) based technique. The broadcast videos have a graphics overlay

which contain four key pieces of information: (1) home team score, (2) visiting team

score, (3) game period, and (4) game clock. An example is shown in Figure 23. Using

the Tesseract OCR system [104], these four values are read for each frame of the

video and are stored along with the corresponding video time-stamp. Next, we parse

the play-by-play stats file and match the stored OCR info with each of the stats.

This results in a mapping of the stats to the broadcast video. Example: Say for
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Figure 23: A typical graphics overlay shown in basketball broadcasts. They contain
four key pieces of information (shown highlighted using red boxes): (1) home team
score, (2) visiting team score, (3) game period, and (4) game clock.

a particular game, for a particular frame of the video, using OCR on the graphics

overlay, we know that the home team score changed from “35” to “38” while the

visiting team score was “29” during the “1st half” of the game at game clock “12:22”

and when the video timestamp was “28:34”. While parsing the play-by-play stats,

we see an entry “Player: Jahlil Okafor, Basket Type: 3-Pt Jump Shot, Game Period:

1st Half, Home Score: 38, Visiting Score: 29, Game Clock: 12:22”. By matching this

entry with the OCR data, we can see that this particular 3-Pt Jump Shot basket

by Jahlil Okafor took place at time-stamp “28:34” in the video. This allows us to

align the rich contextual info from the stats with the corresponding basket within the

video.

We extract three different cues from the stats data that are indicative of the ex-

citement levels within the game: “Score Differential”, “Player Ranking” and “Basket

Type” . Each of these cues are described below.

5.3.3 Cue 2: Player Ranking

Baskets by “star” (top-ranked) players tend to be generate more excitement among

basketball fans than baskets by other lower ranked players. Also, our analysis of

ESPN highlights of 10 NCAA games showed that ESPN tends to favor baskets by

the star athletes and showcases them more in the highlights. The game stats may

or may not contain the player ranking, but they almost always have the data on

each player’s Points-Per-Game average (PPG). PPG has very strong correlation with

player ranking and can be used instead when player ranking data is not available. For

each game, we normalize each player’s PPG between the min and max PPG of all
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Figure 24: Score differential plots for a sample game. The x-axis represents the game
timeline and the red and blue sections of the plots represent the 1st half and 2nd half
of the game respectively. Left: |sh − sv|, the absolute score differential. Right: Sb,
the inverted score differential weighted by the game-clock for each period of the game
(see equation 5).

the players in that game (across both the teams). For each basket b, the scaled PPG

value, Pb, of the player who made the basket gives us the “player ranking” excitement

score for that basket.

5.3.4 Cue 3: Score Differential

People tend to find a game to be more exciting when the game is close (“neck-to-

neck”) and less exciting when one team has a huge lead over the other. Furthermore,

the game tends to be more exciting if the scores of the two teams are close towards

the end of the game period. For a given basket b, if the home team score is sh and the

visiting team score is sv, then the “score differential” excitement, Sb, for that basket

is computed as

Sb =
1

(|sh − sv|+ 1)
∗ (1200− gs) (5)

where gs is the game clock in seconds. As the score differential gets smaller, the

excitement score Sb increases. Each game period is 20 minutes long and the game

clock counts down from 20:00 (1200 seconds) to 00:00 (0 seconds). So, the score

differential is weighed by the amount of time remaining in the game period. Lower

score differentials towards the end of the game period will get higher weights, and

72



Figure 25: This figure shows the preference in baskets shown in the highlights gener-
ated by ESPN based on the basket type. Left: The distribution of baskets based on
basket type across 10 full-length NCAA games. Right: The distribution of baskets
based on basket type across the 10 highlights produced by ESPN for the same 10
NCAA games.

in-turn, higher excitement scores. The score differential plots for a sample game are

shown in figure 24. The first half of the game is shown in red and the second half of

the game is shown in blue. We can see the absolute score differential on the left and

our “score differential” excitement, Sb, on the right. As with the other cues, the Sb

scores are normalized between 0 and 1 for each game.

5.3.5 Cue 4: Basket Type

There are five types of baskets that are shown in basketball highlights: “Dunk”,

“Jumper”, “Layup”, “Two Point Tip Shot”, and “Three Point Jumper” (“Free Throws”

are typically not featured in the highlights). Each of these five baskets require dif-

ferent techniques and skills. Basketball fans tend to find some basket types more

exciting than others. For example, the dunk shot is universally considered to be one

of the most exciting basketball plays and is prominently featured in the highlights

produced by ESPN. This is illustrated in figure 25. On the left, we can see the dis-

tribution of baskets based on the basket type across 10 full-length NCAA games. On

the right, we can see the distribution of baskets based on the basket type across the

10 highlights produced by ESPN for the same 10 NCAA games. We can clearly see
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that ESPN favors certain basket type over others. Although “Free Throw” occurs

34.1% of the time, they are almost never featured in the highlights due to the fact

that a “Free Throw” is not very exciting to watch. However, “Dunk” occurs only

8.3% of the time, but is featured in 37% of the highlights. This is due to the fact that

the viewers love watching a “Dunk” and consider it to be much more exciting than

the other basket types.

These 5 baskets can be rank-ordered in 5! = 120 different ways. Each of these

120 different basket rankings were evaluated on our NCAA dataset and the ranking

that best matched the user-generated ground-truth was chosen. The ranking with the

best match was: “Dunk” >“Two Point Tip Shot” >“Three Point Jumper” >“Layup”

>“Jumper”. Using this ranking, for each basket b, the corresponding basket type’s

rank position, Bb, gives us the “basket type” excitement score for that basket. The

Bb scores are normalized between 0 and 1 for each game.

5.3.6 Cue 5: Motion

The amount of player motion during a given play is usually an indication of how

exciting the play is. For example, a “Free Throw” which has minimal player motion

is less exciting than a “Dunk” wherein all the players are in rapid motion. The

amount of camera motion is also indicative of the excitement levels of the game. For

example, a large panning motion is involved when something exciting happens, such

as a player running from one end of the court to another with the ball. In contrast, a

free-throw has almost no camera movement and is less exciting than the other types

of plays.

For each basket, we computed the optical flow using KLT tracking [102] across

all the frames. Camera motion was determined by computing the dominant optical

flow and player motion was computed by subtracting the camera motion from the

overall flow. For each basket b, the corresponding camera motion magnitude M c
b ,
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player motion magnitude Mp
b , and the overall motion Mb, gives us the “motion”

excitement scores for that basket. Our experiments showed that Mb was a better

indicator of excitement when compared against M c
b and Mp

b individually. The Mb

scores are normalized between 0 and 1 for each game.

5.3.7 Cue Combination

Once all the 5 cues have been extracted for all the baskets and have been normalized

for each game so that they have the same scale, we can combine them using a weighted

sum. The final score, Cb, for each basket b is given by

Cb = ω1 ∗ Ab + ω2 ∗ Pb + ω3 ∗ Sb + ω4 ∗Bb + ω5 ∗Mb (6)

where
∑5

i=1wi = 1. For our 25 game NCAA dataset, the weights are learned

using 25-fold cross-validation. One of the games is held out as test and the weights

are learned using the ground-truth excitement data from the other 24 games. The

process is repeated 25 times, each time holding out a different game for testing. The

final cues weights are computed by averaging the weights across all the 25 runs.

5.3.8 Generating Highlights

With the final cue combination score for all the baskets of a game, we can rank-order

them in terms of their excitement scores. The next step is to put them together to

form the game highlights. The top n exciting baskets are selected from the rank-

ordered list, extracted from the broadcast video, sorted by time-stamp (so that the

baskets appear in order), and put together to form the game highlights. The value of

n depends on the length of the desired summary.

Each of the n clips that were extracted from the broadcast video were 7 seconds

long and had 1.5 second duration between when the basket occurred and the clip

ended. These numbers were learned from the data by studying ESPN highlights.

Figure 26 shows the histogram of durations of the baskets shown across 10 ESPN
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Figure 26: Left: Histogram of duration of the baskets shown across 10 ESPN high-
lights. We can see that ESPN prefers to show basket clips that are 6 to 7 seconds
long. Right: Within each duration, we can see the time elapsed between when the
basket occurred and the clip ended. For example, there are 12 baskets which were 7
seconds long. Out of these 12 baskets, 9 baskets had 1 second duration between when
the basket happens and the clip ends and the other 3 baskets had 2 seconds duration.

highlights and the time elapsed between when the basket occurred and the clip ended.

We can see that ESPN prefers to have basket clips that are 6-7 seconds long with 1-2

seconds between the basket and the end of the clip.

5.4 Evaluation

In this section, we describing our NCAA dataset and the process by which we collected

ground-truth pairwise excitement for each of the baskets. This is followed by the

evaluation of each of our cues and a demonstration of the effectiveness of weighted

cue combination as a predictor of excitement. Finally, we evaluate the highlights

generated using cue combination against highlights generated using each individual

cue and also compare against the highlights produced by ESPN.

5.4.1 Dataset Description

In order to gather ground-truth excitement data and evaluate our approach, we built

a new basketball dataset. This dataset will be made public for the benefit of the

research community.

We collected 25 full-length broadcast videos of NCAA games from 2015 (March
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Madness) from YouTube. This is a total of 2,126.5 minutes (35.44 hours) of basketball

videos. All the videos are 720p HD at 30fps.

For each of these games, we also collected the play-by-play stats data. Next,

using the OCR technique described above, we aligned the play-by-play stats with

the corresponding videos and extracted all the baskets such that each basket clip

was 8 seconds long (5.5 seconds before the basket and 2.5 seconds after the basket).

Free Throws were ignored since Free Throws are typically not shown in highlight

reels. This gave us a total of 1,173 baskets across all the 25 NCAA games with

the corresponding stats data for each basket. The stats data contains the following

information: (1) player name, (2) basket type, (3) home team score, (4) visiting team

score, (5) game clock, and (6) game period.

For 10 out of the 25 games, we also have the game highlights produced by ESPN.

The videos were collected from YouTube and are 720p HD at 30fps.

5.4.2 Ground-Truth Pairwise Excitement

Getting ground-truth excitement data on all the 1,173 baskets in our dataset lets us

analyze each of our five cues and the evaluate the effectiveness of cue combination.

However, collecting this ground-truth is non-trivial. Users find it hard to subjectively

rank a bunch of clips based on how exciting the clips are. The more the number

of clips, the harder the task becomes. However, users find it fairly easy to pick the

exciting clip given only two choices. Thus, in order to gather the ground-truth data,

we conducted A/B test user studies on Amazon’s Mechanical Turk where users were

shown a basket from one of the games and another random basket from the same game

and were asked the question “Which of these two clips is more exciting to watch?”.

We took several steps to ensure the quality of these user studies:

• Each A/B pair was shown to 15 different users in order to get good data and

reduce the likelihood of selection based on chance. This resulted in 17,595 A/B
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Figure 27: A sample A/B test page shown to the users.

tests (15 studies across 1,173 baskets).

• We required all Mechanical Turk users to have atleast 95% approval rating and

a minimum of at least 1,000 previously approved tasks. The A/B tests took an

average of 1 minute and 29 seconds and the users were paid $0.03 per study.

• The order in which the clips were shown in each A/B test was randomized. This

further decreased the likelihood of user bias towards any one choice..

• The users were asked additional questions as a part of each A/B test in order

for us to gain more insight into who our users were. These additional questions

were:
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Figure 28: The distribution of users across the different A/B tests for capturing the
ground-truth pairwise excitement levels of the baskets. Top Left: Distribution across
age groups. Top Right: Distribution on whether basketball fan or not. Bottom-Left:
Distribution on whether team fan or not. Bottom Right: Distribution based on the
number of games watched last season.

– “Are you a basketball fan?” [options “Yes, “No”].

– “Are you a fan (or alumnus) of one of the teams in the clips?” [options

“Yes, “No”].

– “How many basketball games did you watch last season?” [options: “None”,

“1 to 5”, “6 to 10”, “11 to 20”, “21 to 40”, “Greater than 40”].

– “What’s your age?” [options: “18 to 29”, “30 to 39”, “40 to 49”, “50 to

59”, “60 or older”].

Figure 27 shows a sample A/B test page that was shown to the users. After all

the A/B test user studies were completed, we analyzed the data and found that there

were 399 unique users who had participated in our studies. The distribution of the

users based on the questions we asked is as shown in Figure 28. We can see that the
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Table 5: The inter-rater reliability metrics for our A/B tests on assessing the pairwise
excitement of the baskets in our NCAA dataset.
Agreement

between
N or more

users

Number of
baskets

Average
pairwise

agreement
percentage

Average
pairwise
Cohen’s
kappa

Fleiss’
kappa

Interpretation

8 1173 54.26% 0.067 0.067 Slight agreement
9 880 56.79% 0.105 0.105 Slight agreement

10 625 60.14% 0.154 0.154 Slight agreement
11 384 65.01% 0.212 0.213 Fair agreement
12 203 71.18% 0.270 0.270 Fair agreement
13 92 77.76% 0.304 0.305 Fair agreement
14 18 88.15% 0.416 0.382 Fair agreement

majority of our users are between the age range of 18 to 39, are mostly basketball

fans, and mostly not fans of any of the two teams shown in the clips.

5.4.3 Inter-Rater Reliability

In order to compute the overall consensus across our 15 A/B tests for each of the

1,173 baskets, we compute two inter-rater reliability metrics – the Fleiss’ kappa and

the average pairwise Cohen’s kappa [30]. These statistical measures take into account

the amount of agreement that could be expected to occur through chance. Table 5

shows the inter-rater reliability metrics for different values of N , where N is the

number of users who agreed that one basket was more exciting than the other. For

example, from Table 5 we can see that there are 384 baskets for which 11 or more

users (out of the total 15) agreed that one basket was more exciting than the other

in the randomized A/B tests. This has a Fleiss’ kappa of 0.213 which is interpreted

as “Fair Agreement”.

5.4.4 Evaluating Individual Cues

The pairwise excitement ground-truth data allows us to study the effectiveness of

each of our five cues in predicting how exciting a basket is. For our evaluations, we

ignore the baskets which were hard to decide and focus only those baskets which had
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Figure 29: The performance of each cue as a predictor of the excitement levels of
baskets.

atleast 2/3rd agreement among the users, i.e. atleast 10 out of 15 must agree that

one basket is more exciting that the other. This lets us study the effectiveness of our

cues in the absence of noise from the hard-to-decide baskets. From Table 5, we can

see that this gives us 625 baskets for evaluations.

For this evaluation, each of the 625 A/B pairs that was shown to the users, is given

as input to our system. For each individual cue, the system decides which basket is

more exciting. The output of our system for each cue is then compared against the

majority decision made by the users for that basket. If the system decision is same as

the user decision, then we have a match. For each cue, we also compute the Matthews

Correlation Coefficient (MCC) that gives the amount of agreement or disagreement

between the system decision and the user decision [78, 92]. If MCC is -1, it means

that the system decision and the user decision are in total disagreement. If MCC is

+1, it means that the system decision and the user decision are in total agreement.

If the MCC is 0, it means that the match is decision is no better than random.
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Table 6: The percentage of baskets that match the user decision and the MCC score
for each cue.

Percentage of baskets
that matches user decision

MCC

Player Ranking 49.6% (310 / 625) 0.002
Score Differential 55.4% (346 / 625) 0.113
Motion 61.6% (385 / 625) 0.242
Basket Type 62.2% (389 / 625) 0.244
Audio 62.7% (392 / 625) 0.371

The performance of each individual cue is shown in Table 6 and illustrated in

figure 29. We can see that “Motion”, “Basket Type” and “Audio” are relatively

strong indicators of how exciting a basket is while “Score Differential” and “Player

Ranking” are very close to being no better than random. Out of the five cues, “Audio”

is the strongest indicator with a MCC score of 0.371.

5.4.5 Evaluating Weighted Cue Combination

To learn the weights of the various cues, we perform 25-fold cross-validation where

we hold out all the baskets from 1 game for testing while using all the baskets from

the other 24 games for learning the weights. The process is repeated 25 times, with

a different game being held out for testing in each run. In each run, all combinations

of weights are tried and the combination that results in the most matches with the

user decision on the held out test game is deemed as the winning set of weights for

that run. After all the runs are complete, we average the weights across the 25 runs

to get the final set of weights.

The average percentage of baskets that matched user decision across 25 runs was

75.33%. The lowest average percentage was 52.81% with the highest was 91.90%.

When the weights are averaged across all the 25 runs and normalized to add upto

one, as shown in figure 30, we see that Player Ranking gets 4.8% of the total

weight, while Motion gets 10.2%, Score Differential gets 14.6%, Basket Type

gets 14.8%, and Audio gets 55.6% of the total weight respectively.
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Figure 30: The percentage of the total weight that each cue gets during weighted
cue combination (after running 25-fold cross-validation).

Table 7: McNemars tests on statistical significance between each individual cue vs.
cue combination.

χ2 p-value

Player Ranking vs. Cue Combination 86.98 <0.0001
Score Differential vs. Cue Combination 63.00 <0.0001
Motion vs. Cue Combination 31.74 <0.0001
Basket Type vs. Cue Combination 57.34 <0.0001
Audio vs. Cue Combination 32.48 <0.0001

It is interesting to see that after combining all the cues, Audio makes up 55.6%

of the total share. This shows that the audience cheers and the loudness and pitch of

the commentator does indeed drive the excitement levels during a basketball game.

It is also interesting to note that the top three dominant cues, Audio, Basket Type,

and Score Differential, which make up 85% of the total weight are all contextual cues

derived from the environment. This showcases the importance of leveraging context

when applicable.

When the final average weights are used in cue combination and the system out-

put is compared with the user decision, the percentage of baskets that match the

user decision is 76.4%. This is a significant improvement over the best percentage

obtained by any single cue (62.7% with Audio, see Table 6). Furthermore, the MCC

score goes up to 0.528 (from the previous best of 0.371 with only Audio). In order to
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Table 8: A/B test results with all users: Cue combination highlights vs highlights
generated using the individual cues.

Cue Combination Highlights vs.

Number of games for
which cue combination
highlights was selected
by user majority

Median user
agreement
percentage

Player Ranking Highlights 22 / 25 61.29%
Score Differential Highlights 17 / 25 54.84%
Motion Highlights 17 / 25 58.06%
Basket Type Highlights 16 / 25 58.06%
Audio Highlights 16 / 25 61.29%

ensure that the improvement we see from cue combination over each of the individual

cues is statistically significant, we ran the McNemar’s chi-square test (with Yates’

continuity correction). The null hypothesis says that the improvements we see after

cue combination are due to chance., However as shown in Table 7, the χ2 values are

greater than the critical value (at 95% significance level) of 3.84 and the p-values are

less than the significance level (α) of 0.05. Thus the null hypothesis can be rejected.

The improvements seen after cue combination are not due to chance.

5.4.6 Evaluating Highlights

With the final weights for each cue, we can now rank order all the baskets in a game

by their excitement score, pick the top N baskets, order them by the game clock

(so that they are in order), and generate the highlight video. For the 10 games for

which we have ESPN highlights to compare against, we pick N as the number of

baskets that ESPN put in their highlights for each of those 10 games. For the other

15 games, we pick N to be 10 (the average number of baskets that ESPN shows in

their highlights).

Cue Combination vs. Individual Cues: We generated highlights for all the 25

games using both cue combination and also using each of the five individual cues. This

gave us 6 highlight videos for each game. Figure 31 shows 4 sample frames from the
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Figure 31: Sample frames from highlights generated using individual cues: Player
Ranking (Top-Left), Score Differential (Top-Right), Motion (Bottom-Left), and Bas-
ket Type (Bottom-Right).

highlights generated for the Louisville vs. North Carolina NCAA game. Highlights

generated using only Player Ranking mostly featured baskets by Terry Rozier (circled

in red) who was the star player for the Louisville Cardinals (now a NBA draft pick for

the Boston Celtics). The highlights generated using only Score Differential featured

“neck-to-neck” baskets (for example, a score of 58-57 can be seen in the figure) while

the highlights generated using only Motion featured baskets with lots of player and

camera motion (as seen in the figure). Finally, the highlights generated using only

Basket Type featured mostly Dunk shots (a sample shot is shown in the figure).

In order to see if users prefer cue combination highlights over the highlights gen-

erated by individual cues, we ran another A/B test user study. Given the harder

nature of the study where users have to watch two minute-long clips, we doubled

the number of users per test from 15 to 31. For each game, the users were asked to

pick the highlight that they preferred. Similar to the previous study, sufficient care

was taken to randomize the A/B pairs and the users were asked to fill in a similar
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Table 9: A/B test results with basketball fans: Cue combination highlights vs
highlights generated using the individual cues.

Cue Combination Highlights vs.

Number of games for
which cue combination
highlights was selected

by user majority

Median user
agreement
percentage

Player Ranking Highlights 20 / 25 60.00%
Score Differential Highlights 14 / 25 60.00%
Motion Highlights 18 / 25 60.00%
Basket Type Highlights 16 / 25 60.00%
Audio Highlights 15 / 25 60.00%

questionnaire mentioning their age, if they are a basketball fan, if they are a fan of

one of the teams, and the number of games they watched last season.

This study had 335 unique users out of which 245 are basketball fans. The results

of the study with all 335 users are shown in Table 8 and the results with only the 245

basketball fans is shown in Table 9. We can see that highlights generated using cue

combination were preferred over the highlights generated using the individual cues

by both regular users and basketball fans. However, it is interesting to note that

basketball fans seem to prefer score differential highlights slightly more than regular

users. This could be due to the fact that basketball fans watch the game more closely

and pay more attention to the scores shown on the graphics overlay.

Cue Combination vs. ESPN: Our dataset contains the highlights produced

by ESPN for 10 out of the 25 games. We ran a similar A/B test study with 31 users

where users were shown the ESPN highlight and our cue combination highlight and

were asked to pick the highlight that they preferred. To the make the comparison

fair, we regenerated the ESPN highlights using the same video production pipeline

that we used to produce our highlights. This ensured that both the highlights shown

in the A/B test are visually similar.

The results of the A/B tests showed that among all users, our highlights were

preferred in 5/10 games and the ESPN highlights were preferred in the other 5/10
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Figure 32: Basket picks for a sample game (Duke vs. Florida State, 9th Feb 2015).
Each blue dot represents a basket that occurred during the game play. Baskets with
red circles were picked by ESPN for their highlights and baskets with green circles
were picked by our method for our highlights. We can see that 11 out of the 15 baskets
were commonly picked (4 overlaps in the first half and 7 overlaps in the second half).

games. The median agreement percentage was 51.61%. Among basketball fans, our

highlights were preferred in 7/10 games while the ESPN highlights were preferred in

3/10 games. The median agreement percentage was 53.33%. Although basketball fans

showed a slight preference to our highlights, the median agreement percentage shows

that the decision was really hard to make. This shows that the users had a tough time

picking between our highlights and ESPN highlights which in-turn indicates that we

are performing as well as ESPN in producing basketball highlights.

Comparing the individual baskets that were picked for the highlights across all

the 10 games, we noticed 67.4% overlap in the baskets that we picked and the baskets

that ESPN picked. This is illustrated in figure 32 where we show the basket picks for

a sample game (Duke vs. Florida State, 9th Feb 2015). We can see that across both

the game periods, out of the 15 baskets, 11 baskets were commonly picked by our

cue-combination approach and by ESPN. The probability of these 11 baskets being

picked by chance is 0.00005.

Another factor to consider is the distribution of the baskets shown in the highlights

across the two halves of the game. As shown in figure 33, for the 10 games, our cue

combination picks 48% of the baskets from the first half of the game and 52% of the

baskets from the second half of the game. Looking at the ESPN highlights for those
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Figure 33: The distribution of baskets across the two halves of the game for 10 games.
Left: The basket distribution for our cue combination highlights. Right: The basket
distribution for ESPN highlights. We can see that our approach isn’t biased towards
any particular half of the game and closely follows ESPN’s distribution across the
two halves.

10 games, we can see that ESPN has a very similar distribution. They pick 45.3%

of the baskets from the first half and 54.7% of the games from the second half. This

shows that our approach isn’t biased towards baskets from any single period of the

game and closely follows ESPN’s distribution.

Figure 32 and figure 33 further highlights the practicality of our approach and the

similarity of our highlights to the ESPN highlights. This gives us an insight as to

why the users had a hard time deciding between our highlights and ESPN highlights.

5.4.7 Evaluation Strategy

We have used different evaluation strategies in the first three chapters of this thesis

depending on the application and the datase, namely supervised, unsupervised and

semi-supervised learning based evaluations, localization-based evaluations and visu-

alizations. In this chapter, the subjective nature of evaluating the excitement levels

of baskets and the highlight videos led us to follow a different evaluation strategy of

conducting A/B test user studies wherein we rely on the consensus obtained from

multiple users per A/B test. The A/B tests helped us gather ground-truth excite-

ment data for all the 1,173 baskets across the 25 NCAA games and was valuable in
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determining the effectiveness of cue combination against each individual cue and also

against the highlights generated by ESPN.

5.5 Discussion

Our comprehensive user studies and analysis have shown the effectiveness of leverag-

ing contextual cues derived from the environment in determining the exciting baskets

of a game and automatically producing the game highlights.

However, there are some limitations of our work. The ground-truth data that

we used for evaluations is pairwise excitement gather using our A/B tests. Pairwise

excitement scores are inherently different from true excitement scores wherein the

users look at all the baskets in a game and puts them in a rank-order from least

exciting to most exciting. While this kind of data would be more useful than pairwise

excitement scores, it is practically impossible to get the true excitement scores through

user studies. A typical basketball game has 50 or more baskets and it is very hard for

humans to look at so many baskets, remember their excitement levels, and rank order

them. Another limitation is that our method does not adaptively change the weights

of the cues based on changes in the environment. For example, if the audience start

leaving after the first half, we should be able to detect this and adaptively decrease

the weight given to the audio cue. This is a good direction for our future work.

While running the A/B tests where users are shown two basket clips and asked

to pick the one that is more exciting, we wondered how the results would change if

users were shown the same A/B pair, but with only the audio and only the video. To

answer this question, we picked the top 203 baskets that had 80% (12/15) agreement

between the users (i.e. baskets for which most users had a strong consensus in deciding

between choice A and choice B), and generated two more A/B tests with the same

pairs as before. But this time one of the A/B tests had just the audio of the game

and the other A/B test had clips with just the video (with the audio stripped out).
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We ran these new A/B tests for the 203 baskets with 15 users per test (as before)

and analyzed the results. It is interesting to note that for the audio-only case, the

agreement fell from 80% to 59.70% and the Fleiss’ kappa value dropped from 0.270

(fair agreement) to 0.177 (slight agreement), and for the video-only case, the average

pairwise agreement fell to 59.82% and the Fleiss’ kappa value dropped to 0.116

(slight agreement). This shows that the strong consensus between the users broke

down when they had to pick between clips that had either only the audio or only

the video. This further proves the point that the contextual cues provided by audio

(and other sources) can be a valuable tool in developing practical Computer Vision

applications.

An interesting question is “how would a highlight generated using randomly se-

lected baskets compare against our cue combination highlights and against ESPN

highlights?”. To answer this question, we generated 10 highlights using random bas-

kets selected from 10 of the games (and placed in chronological order) and ran addi-

tional A/B tests for evaluating these random highlights against our cue combination

highlights and also against the ESPN highlights. As before, we ran the tests with

31 users per A/B test. The results showed that among all users our cue-combination

highlights were preferred over random highlights in 7/10 games with a median user

agreement of 61.29%. Basketball fans preferred our highlights in 8/10 games with

a median user agreement of 53.33%. The A/B test results against ESPN highlights

showed that among all users ESPN highlights were preferred over random highlights

in 7/10 games with a median user agreement of 54.84%. Basketball fans preferred

ESPN highlights in 9/10 games with a median user agreement of 60.00%. These

results tell us that while users prefer our highlights and ESPN highlights over random

highlights, the random highlights still do get picked in some of the games. This fur-

ther highlights the subjective and complex nature of the problem domain. However,

it also tells us that there is probably no uncanny valley for basketball highlights and
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that users are much more forgiving of mistakes that our approach may make.

5.6 Conclusion

In this chapter, we explored the use of environmental context and presented a practical

application wherein environmental contextual cues can be leveraged to automatically

produce basketball highlights. We explored 5 cues that are indicative of excitement

levels in basketball games. Four of these cues are derived from sources within the

environment while the fifth cue is extracted from the video data. We introduced

a new dataset of 25 NCAA games with 1,173 baskets with ground-truth pair-wise

excitement scores for evaluating our approach with. We conducted comprehensive

user studies with multiple participants which showed the effectiveness of our cues

and our cue combination method that can produce highlights that are comparable

to those produced by ESPN. Interesting directions for future work include exploring

methods to collect more ground-truth excitement data in a way that maximizes inter-

rater reliability, exploring more cues that are indicative of excitement levels, and

dynamically adapting the weights of the cues as the game proceeds based on the

changes in the environment.
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CHAPTER VI

CONCLUSION

In this thesis, we explored several methodologies of leveraging contextual cues for

dynamic scene understanding and presented solutions to several real-world Computer

Vision problems that would have either been intractable or impractical without the

aid of context.

In particular, we categorized context into three broad classes: (1) context that

is part of the video data, (2) context that is concurrently collected from an external

sensor co-located with the camera, and (3) context provided by the environment

within which the scene is unfolding. Our hypothesis was that contextual information

in either of these three classes can be effectively leveraged, along with the video data,

to improve dynamic scene understanding. Through our various studies that explored

each of these three contextual classes across several different application domains, we

showed that our hypothesis does indeed hold true. This thesis highlights the valuable

nature of context and how it can be brought to bear on hard to solve Computer Vision

problems that have practical real-world applications. Figure 34 provides a summary

of the work done and the contributions of this thesis.

In the first part of this thesis, we studied context that is part of the video data.

We presented a significant extension to BoW-based activity recognition approaches,

where we augmented classical BoW models with temporal, local and global structural

information, using three different temporal encoding techniques using n-grams and

randomly-sampled regular expressions. Along with activity recognition, we showed

that our approach can also be used to detect anomalies, predict skill levels, and

categorize objects based on their function. Our Augmented-BoW technique has also
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Figure 34: Summary of the contributions of this thesis.

been used to analyze non-video data as well, such as recognizing home-based activities

using water-pressure data [109] and detect insider threats in large corporate systems

using system usage logs [100].

In the second part of the thesis, we studied context that is concurrently collected

from an external sensor co-located with the camera. In particular, the focus of our

study was on two types of sensor data: (1) egocentric head orientation information,

and (2) GPS. Using egocentric sensor data, we demonstrated a working system that

can localize a person’s FOV, determine the point-of-interest, and map shifts in at-

tention over time. We also showed how egocentric context from multiple sensors can

be used to localize the joint attention of several people in both indoor and outdoor

environments. For the second half of this study, we showed how GPS can be used to

automatically recognize foods eaten in restaurants and our experiments on 5 different

cuisines highlighted the potential practicality of our approach. Apart from GPS and

93



egocentric orientation, there are other types of sensor data that can be captured along

with the video data. Examples include accelerometer data, magnetic field readings,

infra-red heat signals, etc. As shown by this thesis, depending on the application

in hand, using the relevant contextual data will typically result in a more practical,

reliable, and scalable approach than using just the video data.

In the final part of this thesis, we studied context that is provided by the envi-

ronment within which the activity is taking place. Using the example of sports, we

showed how contextual cues derived from the on-court statisticians and the audience

and commentator audio can be used along with the video data to understand the

excitement levels of the game and automatically produce the game highlights. We

conducted comprehensive user studies to generate pairwise excitement ground-truth

for our NCAA dataset and to show the effectiveness of the environmental contextual

cues.

Limitations: Leveraging context makes hard problems more tractable and is

instrumental in building practical real-world applications. While each of the different

types of context have been thoroughly discussed in this thesis, they do have certain

limitations.

Let us first look at the context that is part of the video data. Our proposed

Augmented Bag-of-Words model is very good at recognizing long term activities, i.e.

activities that span several minutes, hours or even days. Long term activities can

intuitively be represented as sequences of (short term) events and are rich in tem-

poral and structural information which is exploited by our approach to build better

bag-of-words (BoW) models. To highlight the length of the activities that we apply

our techniques on, let us look at the four datasets used: (1) Ocean City surveillance:

Each vehicle activity is typically 1 to 5 minutes long; (2) Surgical skill assessment:

Each suturing activity is typically 15 to 20 minutes long; (3) Player activities from
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soccer videos: Each game play is 45 minutes long; (4) Wide Area Airborne Surveil-

lance (WAAS): The human activities span a duration of 46.5 hours (almost 2 days).

In contrast, the state-of-the-art human activity datasets like Hollywood2, YouTube,

UCF Sports and others contain short term activities like pick-up-phone, open-car-

door, dive, swing, handshake, etc. These activities are typically 5 to 20 seconds long.

Our approach, which is designed to make inferences from long term activity data, is

not the right tool for such short term recognition tasks. The reason for this is as

follows: The standard approach in human activity recognition is to cluster features

using k-means with k=4000 to build BoW codebooks (in the literature, the value

k=4000 has been shown to give the best empirical results). When short term videos

of length 5 to 20 seconds are represented by words drawn from a large vocabulary of

size 4000, the words get densely packed together and the time elapsed between the

individual words tends to become zero. Thus our approach to discover the underlying

temporal information is no longer applicable. Also there is insufficient information

to generate random sampled regular expressions that are useful for discovering global

patterns. However, it is important to note that the short term activities like open-

car-door, pick-up-phone, etc are exactly the type of events that long term activities

are composed of. For example, a long-term-activity such as: (event1:open-car-door,

event2:kiss, event3:pick-up-phone, ...), could be given as input to our model which

can then extract spatio-temporal contextual information for long term activity recog-

nition, skill assessment, functional categorization and anomaly detection.

Next, let us look at the context that is gathered from co-located sensors. In

the case of egocentric context, we make the assumption that a reference dataset is

always available. Similarly, in the case of geographic context, we again make a similar

assumption that the menu for each restaurant is available and that it is possible to

automatically get representative canonical images (using web-based image search) for

the food items on the menu to train our classifiers. While such assumptions on the
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availability of reference data may not hold in some real-world applications, there is

sufficient evidence to believe that these limitations may disappear with the current

trend towards collecting more data and making it easily accessible to all. Indoor

and outdoor spaces are being mapped, modeled and photographed more frequently

with better cameras. Also, several companies are building centralized databases of

restaurant menus while people are taking photographs of food much more frequently

and tagging them appropriately. This explosion in data is extremely beneficial to

systems that rely on contextual information since they now have access to better

quality and more reliable contextual information.

Another limitation is the reliability of the sensor data. Gyroscopes and accelerom-

eters drift over time, magnetometers are influenced by surrounding objects and struc-

tures and GPS is only accurate to a certain range. Thus relying heavily on the sensor

data may lead to unreliable results. Finding the right balance between computation-

ally intensive vision techniques and cheap contextual data can be tricky and needs to

be fine-tuned based on the specifications and quality of the sensors that are available

and the application that they are being used for. However, with the innovation in

sensor technology, with time this limitation is bound to get addressed. Similar ques-

tions of reliability apply to environmental context as well. For example, to generate

the basketball highlights, we rely heavily on the play-by-play stats data. This data is

human generated by the on-court statisticians and is prone to human errors. Errors

in the stats can propagate throughout the system and can lead to less than optimal

highlight generation. This problem can be solved by capturing the environmental

contextual data using two or more sources and cross-referencing and cross-checking

the data to ensure its accuracy.

Future Work: We hope this thesis has been effective in convincing the reader

regarding the importance of context. Our human perception system extensively lever-

ages context by looking at the global organizational structure of the scene before
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making local decisions. Building similar vision systems that leverage context gets us

closer to solving hard problems that seem intractable when only the visual signal is

considered.

While we have categorized and studied different types of context, this thesis does

not attempt to present a unifying framework. This is a very interesting and useful

direction for future work in this area. Providing an unifying framework involves the

following key areas of research:

1. How best can we equip video and image capture devices with co-located sensors?

Google Glass is a good example of innovative research in this area. Glass is

a small wearable device, yet contains sophisticated sensor-fusion capabilities

due to on-device custom-designed sensors such as gyroscope, accelerometer and

magnetometer. Another example is the Contour wearable camera that comes

with GPS and also measures the speed and elevation of the user. Such innovative

devices allow for the collection of relevant and useful contextual information.

2. How best can we store the contextual information with the media data? As the

contextual data (for example GPS) is being captured along with the video (or

the image), it needs to be stored along with the media data. For example, for

images, the contextual information can be stored as metadata information in the

EXIF data of the images and videos. However the video capture and the sensor

data capture could be at different frame rates and need to be synchronized

appropriately to ensure that the resulting metadata is valid and useful.

3. How best can we convert the contextual metadata captured by various devices

to a standardized format? Different device manufacturers capture and store

the contextual information in their proprietary formats. However, a universal

standardized format is needed that can be used to convert the metadata to and

from the manufacturer’s format. The standard format needs to include all the
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relevant data and also be flexible enough to be extensible for future needs that

may arise.

4. How best can the standardized contextual data be used by vision systems for

real-world applications? Having the contextual data in a standardized format

will allow researchers to develop vision systems that can interact with other

vision systems and pass data to each other efficiently. This can potentially lead

to a modular model where the contextual information can flow through the

various components of the system and can be leveraged as and when needed by

the different components.

Research and engineering in each of the above areas will go a long way in having

a unified and standardized contextual framework that vision systems can closely in-

tegrate and interact with. This will take us closer towards our endeavor of building

practical and real-world computer vision systems that are faster, more accurate and

more reliable.
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[105] Sonnenburg, S., Rätsch, G., Schäfer, C., and Schölkopf, B., “Large
scale multiple kernel learning,” The Journal of Machine Learning Research,
vol. 7, pp. 1531–1565, 2006.

[106] Strat, T. M. and Fischler, M. A., “Context-based vision: recognizing
objects using information from both 2d and 3d imagery,” Trans. PAMI, vol. 13,
no. 10, pp. 1050–1065, 1991.

[107] Sudderth, E. B., Torralba, A., Freeman, W. T., and Willsky, A. S.,
“Learning hierarchical models of scenes, objects, and parts,” in ICCV, vol. 2,
pp. 1331–1338, IEEE, 2005.

106



[108] Tang, A. and Boring, S., “# epicplay: crowd-sourcing sports video high-
lights,” in Proceedings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pp. 1569–1572, ACM, 2012.

[109] Thomaz, E., Bettadapura, V., Reyes, G., Sandesh, M., Schindler,
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