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Abstract

The pervasiveness of mobile cameras has resulted in a
dramatic increase in food photos, which are pictures re-
flecting what people eat. In this paper, we study how tak-
ing pictures of what we eat in restaurants can be used for
the purpose of automating food journaling. We propose to
leverage the context of where the picture was taken, with ad-
ditional information about the restaurant, available online,
coupled with state-of-the-art computer vision techniques to
recognize the food being consumed. To this end, we demon-
strate image-based recognition of foods eaten in restaurants
by training a classifier with images from restaurant’s on-
line menu databases. We evaluate the performance of our
system in unconstrained, real-world settings with food im-
ages taken in 10 restaurants across 5 different types of food
(American, Indian, Italian, Mexican and Thai).

1. Introduction

Recent studies show strong evidence that adherence to
dietary self-monitoring helps people lose weight and meet
dietary goals [5]. This is critically important since obesity
is now a major public health concern associated with rising
rates of chronic disease and early death [13].

Although numerous methods have been suggested for
addressing the problem of poor adherence to nutrition jour-
naling [1, 19, 27], a truly practical system for objective di-
etary monitoring has not yet been realized; the most com-
mon technique for logging eating habits today remains self-
reports through paper diaries and more recently, smartphone
applications. This process is tedious, time-consuming,
prone to errors and leads to selective under reporting [10].

While needs for automated food journaling persist, we
are seeing an ever increasing growth in people photograph-
ing what they eat. In this paper we present a system and ap-
proach for automatically recognizing foods eaten at restau-
rants from first-person food photos with the goal of facilitat-

ing food journaling. The methodology we employ is unique
because it leverages sensor data (i.e., location) captured at
the time photos are taken. Additionally, online resources
such as restaurant menus and online images are used to help
recognize foods once a location has been identified.

Our motivation for focusing on restaurant eating activ-
ities stems from findings from recent surveys indicating a
trend towards eating out versus eating at home. In 1970,
25.9 percent of all food spending was on food away from
home; by 2012, that share rose to its highest level of 43.1
percent [23]. Additionally, 8 in 10 Americans report eating
at fast-food restaurants at least monthly, with almost half
saying they eat fast food at least weekly [9].

Research in the computer vision community has ex-
plored the recognition of either a small sub-set of food types
in controlled laboratory environments [6, 26] or food im-
ages obtained from the web [11]. However, there have been
only a few validated implementations that address the chal-
lenge of food recognition from images taken “in the wild”
[12]. Systems that rely on crowdsourcing, such as PlateM-
ate [18], have shown promise but are limited in terms of cost
and scalability. Additionally, privacy concerns might arise
when food photographs are reviewed by untrusted human
computation workers [21].

In this paper, we seek an approach that supports auto-
matic recognition of food, leveraging the context of where
the photograph was taken. Our contributions are:

• An automatic workflow where online resources are
queried with contextual sensor data to find food im-
ages and additional information about the restaurant
where the food picture was taken, with the intent to
build classifiers for food recognition.

• An image classification approach using the SMO-
MKL multi-class SVM classification framework with
features extracted from test photographs.

• An in-the-wild evaluation of our approach with food
images taken in 10 restaurants across 5 different types
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Figure 1. An overview of our automatic food recognition approach.

of cuisines (American, Indian, Italian, Mexican and
Thai).

• A comparative evaluation focused on the effect of lo-
cation data in food recognition results.

In this paper, we concentrate on food recognition, lever-
aging the additional context that is available (location, web-
sites, etc.). Our goal in this paper is to in essence, using
food and restaurants as the domain, demonstrate the value
of external context, coupled with image recognition to sup-
port classification. We believe that the same method can be
used for many other domains.

2. Related Work

Various sensor-based methods for automated dietary
monitoring have been proposed over the years. Amft and
Troster [1] explored sensors in the wrists, head and neck
to automatically detect food intake gestures, chewing, and
swallowing from accelerometer and acoustic sensor data.
Sazonov et al. built a system for monitoring swallowing and
chewing using a piezoelectric strain gauge positioned be-
low the ear and a small microphone located over the laryn-
gopharynx [19]. Yatani and Truong presented a wearable
acoustic sensor attached to the user’s neck [27] while Cheng
et al. explored the use of a neckband for nutrition monitor-
ing [7].

With the emergence of low-cost, high-resolution wear-
able cameras, recording individuals as they perform every-
day activities such as eating has been gaining appeal [2].
In this approach, individuals wear cameras that take first-
person point-of-view photographs periodically throughout
the day. Although first-person point-of-view images offer
a viable alternative to direct observation, one of the fun-
damental problems is image analysis. All captured images
must be manually coded for salient content (e.g., evidence

of eating activity), a process tends to be tedious and time-
consuming.

Over the past decade, research in computer vision is
moving towards “in the wild” approaches. Recent research
has focussed on recognizing realistic actions in videos [15],
unconstrained face verification and labeling [14] and objec-
tion detection and recognition in natural images [8]. Food
recognition in the wild using vision-based methods is grow-
ing as a topic of interest, with Kitamura et al. [12] showing
promise.

Finally, human computation lies in-between completely
manual and fully-automated vision-based image analysis.
PlateMate [18] crowdsources nutritional analysis from food
photographs using Amazon Mechanical Turk, and Thomaz
et al. investigated the use of crowdsourcing to detect
[22] eating moments from first-person point-of-view im-
ages. Despite the promise of these crowdsourcing-based
approaches, there are clear benefits to a fully automated
method in economic terms, and possibly with regards to pri-
vacy as well.

3. Methodology

Recognizing foods from photographs is a challenging
undertaking. The complexity arises from the large num-
ber of food categories, variations in their appearance and
shape, the different ways in which they are served and the
environmental conditions they are presented in. To offset
the difficulty of this task, the methodology we propose (Fig-
ure 1) centers on the use of location information about the
eating activity, and also restaurant menu databases that can
be queried online. As noted, our technique is specifically
aimed at eating activities in restaurants as we leverage the
context of restaurant related information for classification.



Figure 2. Weakly-labeled training images obtained from Google Image search for 3 classes of food: Left: Basil Fried Rice; Center: Curry
Katsu; Right: Lo Mein.

3.1. Image Acquisition

The first step in our approach involves the acquisition
of food images. The popularity of cameras in smartphones
and wearable devices like Google Glass makes it easy to
capture food images in restaurants. In fact, many food pho-
tographs communities such as FoodGawker have emerged
over the last several years, all centered on food photo shar-
ing. Photographing food is also hitting major photo sharing
sites like Instagram, Pinterest and Flickr, and food review
sites like Yelp. These food-oriented photo activities illus-
trate the practicality of using manually-shot food photos for
food recognition.

3.2. Geo-Localizing Images

The second step involves associating food photos with
longitude and latitude coordinates. If the camera that is be-
ing used supports image geo-tagging, then the process of
localizing images is greatly simplified. Commodity smart-
phones and cameras like the Contour and SenseCam come
with built-in GPS capabilities. If the geo-tag is not avail-
able, image localization techniques can be used [28]. Once
location is obtained for all captured images, the APIs of
Yelp and Google Places are valuable for matching the im-
ages’ geo-tags coincide with the geo-tag of a restaurant.

3.3. Weakly Supervised Learning

Being able to localize images to a restaurant greatly con-
strains the problem of food classification in the wild. A
strong assumption can be made that the food present in the
images must be from one of the items on the restaurant’s
menu. This key observation makes it possible to build a
weakly supervised classification framework for food classi-
fication. The subsequent sections describe in detail the gath-
ering of weakly-labeled training data, preparing the test data
and classification using the SMO-MKL multi-class SVM
classification framework [25].

3.3.1 Gathering Training Data

We start with collecting images localized to a particular
restaurant R. Once we know R, we can use the web as
a knowledge-base and search for R’s menu. This task is
greatly simplified thanks to online data-sources like Yelp,
Google Places, Allmenus.com and Openmenu.com, which
provides comprehensive databases of restaurant menus.

Let the menu for R be denoted by MR and let the items
on the menu be mi. For each mi ∈ MR, the top 50 images
of mi are downloaded using search engines like Google
Image search. This comprises the weakly-labeled training
data. Three examples are shown in Figure 2. From the im-
ages, it is possible to see that there is a high degree of intra-
class variability in terms of color and presentation of food.
As is the case with any state-of-the-art object recognition
system, our approach relies on the fact that given sufficient
number of images for each class, it should be possible to
learn common patterns and statistical similarities from the
images.

3.3.2 Preparing Testing Data

The test images, localized to restaurant R, are segmented
using hierarchical segmentation and the segments are ex-
tracted from parts of the image where we expect the food to
be present [3]. The final set of segmented images forms our
test data. An example is shown in Figure 3.

3.3.3 Feature Descriptors

Choosing the right combination of feature detectors, de-
scriptors and classification backend is key to achieving good
accuracy in any object recognition or image categorization
task. While salient point detectors and corresponding re-
gion descriptors can robustly detect regions which are in-
variant to translation, rotation and scale [16, 17], illumina-
tion changes can still cause performance to drop. This is
a cause of concern when dealing with food images, since
images taken at restaurants are typically indoors and under



Figure 3. Extracting segments using hierarchical segmentation.
The final segmented image is shown on the right.

varying lighting conditions. Recent work by van de Sande
et al. [24] systematically studies the invariance properties
and distinctiveness of color descriptors. The results of this
study guided the choice of the descriptors in our approach.
For the classification back-end, we use Multiple Kernel
Learning (MKL), which in recent years, has given robust
performance on object categorization tasks [4, 20, 25].

For feature extraction from the training and test data,
a Harris-Laplace point detector is used since it has shown
good performance for category recognition tasks [29] and
is scale-invariant. However the choice of feature descriptor
is more complicated. As seen in Figure 2, there is a high de-
gree of intra-class variability in terms of color and lighting.
Based on the recent work by van de Sande et al. [24] that
studies the invariance properties and distinctiveness of var-
ious color descriptors on light intensity and color changes,
we pick the following six descriptors, 2 color-based and 4
SIFT-based (Scale-Invariant Feature Transform [16]):

Color Moment Invariants: Generalized
color moments Mabc

pq (of order p + q and de-
gree a + b + c) have been defined as Mabc

pq =∫ ∫
xpyq[IR(x, y)]

a[IG(x, y)]
b[IB(x, y)]

cdxdy. Color
moment invariants are those combinations of generalized
color moments that allow for normalization against photo-
metric changes and are invariant to changes and shifts in
light intensity and color.

Hue Histograms: Based on the observation that the cer-
tainty of hue is inversely proportional to the saturation, each
hue sample in the hue histogram is weighted by its satura-
tion. This helps overcome the (known) instability of hue
near the gray axis in HSV space. The descriptors obtained
are invariant to changes and shifts in light intensity.

C-SIFT: The descriptors are built using the C-invariant
(normalized opponent color space). C-SIFT is invariant to
changes in light intensity.

OpponentSIFT: All the channels in the opponent color
space are described using SIFT descriptors. They are in-
variant to changes and shifts in light intensity.

RGB-SIFT: SIFT descriptors are computed for every
RGB channel independently. The resulting descriptors are
invariant to changes and shifts in light intensity and color.

SIFT: The original SIFT descriptor proposed by Lowe
[16]. It is invariant to changes and shifts in light intensity.

3.3.4 Classification Using SMO-MKL

For a given restaurant R, 100,000 interest points are de-
tected in the training data and for each of the 6 descriptors,
visual codebooks are built using k-means clustering with k
= 1000. Using these codebooks, bag-of-words (BoW) his-
tograms are built for the training images. Similarly, interest
points are detected in the test images and BoW are built for
the 6 descriptors (using the visual codebooks generated with
the training data).

For each of the 6 sets of BoW features, extended Gaus-
sians kernels of the following form are computed:

K(Hi, Hj) = exp(− 1

A
D(Hi, Hj)) (1)

where Hi = {hin} and Hj = {hjn} are the BoW his-
tograms (scaled between 0 to 1 such that they lie within a
unit hypersphere) and D(Hi, Hj) is the χ2 distance defined
as

D(Hi, Hj) =
1

2

V∑
n=1

(hin − hjn)2

hin + hjn
(2)

where V is the vocabulary size (1000, in our case). The
parameter A is the mean value of the distances between all
the training examples [29]. Given the set of these N base
kernels {Kk} (in our caseN = 6), linear MKL aims to learn
a linear combination of the base kernels: K =

∑N
k=1 αiKi

But the standard MKL formulation subject to l1 regular-
ization leads to a dual that is not differentiable. Hence the
Sequential Minimal Optimization (SMO) algorithm cannot
be applied and more expensive alternatives have to be pur-
sued. Recently, Vishwanathan et al. showed that it is possi-
ble to use the SMO algorithm if the focus is on training p-
norm MKL, with p > 1 [25]. They also show that the SMO-
MKL algorithm is robust and significantly faster than the
state-of-the-art p-norm MKL solvers. In our experiments,
we train and test using the SMO-MKL SVM.

4. Study & Evaluation
We perform two sets of experiments to evaluate our ap-

proach. In the first set of experiments, we compare the fea-
ture extraction and classification techniques used in this pa-
per, with the state-of-the-art food recognition algorithms on



the PFID benchmark data-set [6]. This validates our pro-
posed approach. In the second set of experiments, we mea-
sure the performance of the proposed approach for “in-the-
wild” food recognition.

4.1. Comparative Evaluations

We study the performance of the 6 feature descriptors
and SMO-MKL classification on the PFID food data-set.
The PFID dataset is a collection of 61 categories of fast
food images acquired under lab conditions. Each category
contains 3 different instances of food with 6 images from 6
view-points in each instance. In order to compare our re-
sults with the previous published results on PFID [6, 26],
we follow the same protocol used by them, i.e. a 3-fold
cross-validation is performed with 12 images from one in-
stance being used for training while the other 6 images from
the remaining instance are used for testing. The results of
our experiments are shown in Figure 4. MKL gives the best
performance and improves the state-of- the-art [26] by more
than 20%. It is interesting to note that the SIFT descriptor
used in our approach achieves 34.9% accuracy whereas the
SIFT descriptor used in the PFID baseline [6] achieves 9.2%
accuracy. The reason for this difference is that the authors
of the PFID baseline use LIB-SVM for classification with
its default parameters. However, by switching to the χ2

kernel (and ensuring that the data is scaled) and by tuning
the SVM parameters (through a grid-search over the space
of C and γ), we can get a significant boost in performance
with just SIFT features alone.

4.2. Food Recognition in Restaurants

To study the performance and the practicality of our ap-
proach, experiments were conducted on images collected
from restaurants across 5 different cuisines: American, In-
dian, Italian, Mexican and Thai. To discount for user and
location bias, 3 different individuals collected images on
different days from 10 different restaurants (2 per cuisines).
The data collection was done in two phases. In the first
phase, the food images were captured using smartphone
cameras. In total, 300 “in-the-wild” food images (5 cuisines
× 6 dishes/cuisine × 10 images/dish) were obtained. In the
second phase, data collection was repeated using a Google
Glass and an additional 300 images were captured. These
600 “in-the-wild” images, form our test data-set. A sample
of these test images is shown in Figure 5.

Using the geo-location information, the menu for each
restaurant was automatically retrieved. For our experi-
ments, we restricted the training to 15 dishes from each cui-
sine (selected based on online popularity). For each of the
15 dishes on the menu, 50 training images were downloaded
using Google Image search. Thus, a total of 3,750 weakly-
labeled training images were downloaded (5 cuisines × 15
menu-items/cuisine × 50 training-images/menu-item).

Figure 4. Performance of the 6 feature descriptors and SMO-MKL
on the PFID data-set. The first two results (shown in green) are
the baseline for PFID published by [6]. The next two (shown in
red) are the results obtained by using Global Ingredient Represen-
tation (GIR) and Orientation and Midpoint Category (OM) [26].
The rest of the results (in blue) are one ones obtained using the 6
feature descriptors and MKL (CMI: Color Moment Invariant, C-
S: C-SIFT, HH: Hue-Histogram, O-S: OpponentSIFT, R-S: RGB-
SIFT, S: SIFT and MKL: Multiple Kernel Learning). MKL gives
the best performance on this data-set.

Figure 5. Sample (12 out of 600) of the “in-the-wild” images used
in testing.

Next, we perform interest point detection, feature ex-
traction, codebook building for BoW representation, ker-
nel pre-computation and finally classification using SMO-
MKL. The results are summarized in Table 1 and the in-
dividual confusion matrices are shown in Figure 6. We
achieve good classification accuracy with American, Indian
and Italian cuisines. However, for the Mexican and Thai



CMI C-S HH O-S R-S S MKL

American 45.8% 51.7% 43.3% 43.3% 37.5% 29.2% 67.5%
Indian 44.2% 74.2% 55.0% 59.2% 69.2% 65.0% 80.8%
Italian 33.3% 52.5% 67.5% 74.2% 66.7% 49.2% 67.5%

Mexican 36.7% 35.8% 20.8% 37.5% 24.2% 33.3% 43.3%
Thai 27.5% 36.7% 25.0% 33.3% 50.8% 30.8% 50.8%

Table 1. Classification results showing the performance of the various feature descriptors on the 5 cuisines. The columns are: CMI: Color
Moment Invariant, C-S: C-SIFT, HH: Hue-Histogram, O-S: OpponentSIFT, R-S: RGB-SIFT, S: SIFT and MKL: Multiple Kernel Learning.

cuisines, the accuracy is limited. It could be due to the fact
that there is a low degree of visible variability between food
types belonging to the same cuisines. For example, in the
confusion matrix for Thai, we can see that Basil Fried Rice
is confused with Mandarin Fried Rice and Pad Thai Noo-
dles is confused with Lo Mein. It could be very hard, even
for humans, to distinguish between such classes by looking
at their images.

From Table 1, we can see that there is no single descrip-
tor that works well across all the 5 cuisines. This could
be due to the high-degree of variation in the training data.
However, combining the descriptors using MKL yields the
best performance in 4 out of the 5 cases.

4.3. Recognition Without Location Prior

Our approach is based on the hypothesis that knowing
the location (through geo-tags) helps us in narrowing down
the number of food categories which in turn boosts recogni-
tion rates. In order to test this hypothesis, we disregard the
location information and train our SMO-MKL classifier on
all of the training data (3,750 images). With this setup, ac-
curacy across our 600 test images is 15.67%. On the other
hand, the overall average accuracy across the 5 cuisines
(from Figure 6) is 63.33%. We can see that the average
performance increased by 47.66% when location prior was
included. This provides validation that knowing the loca-
tion of eating activities helps in food recognition, and that it
is better to build several smaller restaurant/cuisine specific
classifiers rather than one all-category food classifier.

5. Discussion
In this section we discuss several important points per-

taining to the generalizability of our approach, implementa-
tion issues, and practical considerations.

Generalizability The automatic food identification ap-
proach that we propose is focused on eating activities in
restaurants. Although this might seem limiting, eating out
has been growing in popularity and 43.1% of food spend-
ing was reported to having been spent in foods away from
home in 2012 [9, 23]. Moreover, we feel that eating and
food information gathered in restaurants is more valuable
for dietary self-monitoring than food information obtained

at home, since individuals are more likely to know food
types and the composition of food items prepared in their
own homes.

We designed our study and evaluation with the goal of
maximizing the external validity of our results. We evalu-
ated our approach by having three individuals collect im-
ages from the most popular restaurant types by cuisine in
the US on different days and using two different devices
(smartphones and Google Glass). We feel confident that
our methodology will scale in the future, especially since it
leverages sensor data, online resources and practices around
food imagery that will become increasingly more prevalent
in years to come.

One important aspect of the approach is that it depends
on weakly-labeled training images obtained from the web.
The high-degree of intra-class variability for the same food
across different restaurants has a negative effect on perfor-
mance. A promising alternative is to train on (automati-
cally acquired) food images taken at the same restaurant
as the one where the test images were taken. While get-
ting this kind of data seems difficult, it may soon be possi-
ble. A recently launched service by Yelp (among others),
allows users to upload photos of their food. With such
crowd-sourced imagery available for a given restaurant, it
may soon be possible to train specialized classifiers for that
restaurant. In our future work, we plan to test this hypothe-
sis and improve the recognition accuracies.

Location Error We not only identify the cuisine that the
individual is eating, but also identify the specific dish that
is being consumed. Our approach hinges on identifying the
restaurant the individual is at, and retrieving the menu of
said restaurant. Although latitude and longitude can be re-
liably obtained with GPS sensors in mobile and wearable
devices today, there might be times when the association
between location data and the exact restaurant the person
is visiting is erroneous (e.g. person is inside a shopping
mall, or when two or three restaurants are in close proximity
to each other). Although this might seem like a limitation
of our method, it is usually not of practical concern since
restaurants that are physically close are typically signifi-
cantly different in their offerings. Thus, it is often enough
to identify the general physical area the individual is at (as



Figure 6. Confusion matrices for the best performing features of
Table 1 (for each of the 5 cuisines). Darker colors show better
recognition. The 6 food classes in the rows are the ones used for
testing and the 15 food classes in the columns are the ones used
for training. The overall average accuracy is 63.33%

opposed to the exact restaurant) and retrieve the menu of all
restaurants and their respective food photos.

Semi-Automating Food Journaling Dietary self-
monitoring is effective when individuals are actively
engaged and become aware of their eating behaviors. This,
in turn, can lead to reflection and modifications in food
habits. Our approach to food recognition is designed to
facilitate dietary self-monitoring. Engagement is achieved
by having individuals take a picture of their food; the
tedious and time-consuming task of obtaining details about
the food consumed is automated.

6. Conclusion

Although numerous solutions have been suggested for
addressing the problem of poor adherence to nutrition jour-
naling, a truly practical system for dietary self-monitoring
remains an open research question. In this paper, we
present a method for automatically recognizing foods eaten
in restaurants leveraging location sensor data and online
databases.

The contributions of this work are (1) an automatic work-
flow where online resources are queried with contextual
sensor data (e.g., location) to assist in the recognition of
food in photographs.; (2) image classification using the
SMO-MKL multi-class SVM classification framework with
features extracted using color and point-based algorithms;
(3) an in-the-wild evaluation of our approach with food im-
ages taken in 10 restaurants across 5 different types of food
(American, Indian, Italian, Mexican and Thai); and (4) a
comparative evaluation focused on the effect of location
data in food recognition results.
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B. Schölkopf. Large scale multiple kernel learn-
ing. The Journal of Machine Learning Research,
7:1531–1565, 2006. 4

[21] E. Thomaz, A. Parnami, J. Bidwell, I. A. Essa, and
G. D. Abowd. Technological approaches for address-
ing privacy concerns when recognizing eating behav-
iors with wearable cameras. UbiComp, pages 739–
748, 2013. 1

[22] E. Thomaz, A. Parnami, I. A. Essa, and G. D. Abowd.
Feasibility of identifying eating moments from first-
person images leveraging human computation. Sense-
Cam, pages 26–33, 2013. 2

[23] USDA. Food consumption and demand, Nov. 2013. 1,
6

[24] K. Van De Sande, T. Gevers, and C. Snoek. Evaluat-
ing color descriptors for object and scene recognition.
PAMI, 32(9):1582–1596, 2010. 4

[25] S. Vishwanathan, Z. Sun, N. Theera-Ampornpunt, and
M. Varma. Multiple kernel learning and the smo algo-
rithm. NIPS, 2010. 3, 4

[26] S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar.
Food recognition using statistics of pairwise local fea-
tures. In CVPR, 2010. 1, 5

[27] K. Yatani and K. N. Truong. BodyScope: a wearable
acoustic sensor for activity recognition. UbiComp ’12:
Proceedings of the 2012 ACM Conference on Ubiqui-
tous Computing, pages 341–350, 2012. 1, 2

[28] A. Zamir and M. Shah. Accurate image localization
based on google maps street view. ECCV, 2010. 3

[29] J. Zhang, M. Marszałek, S. Lazebnik, and C. Schmid.
Local features and kernels for classification of texture
and object categories: A comprehensive study. IJCV,
73(2):213–238, 2007. 4


